Electronic Properties and Defect Levels Induced by n/p-Type Defect-Complexes in Ge

2021 ◽  
Author(s):  
Emmanuel Igumbor ◽  
Okikiola Olaniyan ◽  
Guy Moise Dongho-Nguimdo ◽  
Edwin Mapasha ◽  
Sohail Ahmad ◽  
...  
2007 ◽  
Vol 996 ◽  
Author(s):  
Peter Broqvist ◽  
Alfredo Pasquarello

AbstractWe study structural and electronic properties of the oxygen vacancy in monoclinic HfO2 for five different charge states. We use a hybrid density functional to accurately reproduce the experimental band gap. To compare with measured defect levels, we determine total-energy differences appropriate to the considered experiments. Our results show that the oxygen vacancy can consistently account for the defect levels observed in optical absorption, direct electron injection, and trap-assisted conduction experiments.


1982 ◽  
Vol 14 ◽  
Author(s):  
P. J. Lin-Chung

ABSTRACTA study of the electronic states associated with divacancy defects and with the defect complexes involving an anion antisite with a group IV atom (Ac-IV) in GaAs and GaP is reported. The local densities of states have been determined using the large cluster recursion approach. The properties as well as the position of the gap states of the divacancy defect in GaAs are found to be consistent with the experimental results for the EL2 level. The change of the position of the defect levels of (Ac-IV) as a result of the change of bonding is analyzed. The effect of GaAs-A&As interface on the (Ac-IV) defect level is also examined.


2001 ◽  
Vol 664 ◽  
Author(s):  
Thomas A. Wagner ◽  
Lars Oberbeck ◽  
Melanie Nerding ◽  
Horst P. Strunk ◽  
Ralf B. Bergmann

ABSTRACTElectronic properties of thin epitaxial silicon films deposited at temperatures below 650°C by means of ion-assisted deposition strongly depend on substrate orientation as well as on deposition temperature: In (100)-oriented epitaxial films we find a low density of structural defects, and the minority carrier diffusion length is only limited by the presence of point defects or point defect complexes. These investigations also show an improvement of the electronic quality with increasing deposition temperature. Epitaxy on non-(100)-oriented substrates results in a significantly higher density of structural defects. The electronic properties of films deposited on stable flat surfaces, such as (111)- and (113)-oriented substrates are inferior as compared to (100)-oriented films, but are still superior to those of films deposited on faceted surfaces, as shown by light beam induced current and electron back-scattering diffraction measurements of polycrystalline thin films.


2006 ◽  
Vol 527-529 ◽  
pp. 647-650
Author(s):  
Won Woo Lee ◽  
Mary Ellen Zvanut

The purpose of this study is to determine the vanadium defect levels in semi-insulating 4H-SiC and 6H-SiC using optical admittance spectroscopy (OAS). OAS data show several distinct peaks for the vanadium-doped SI 4H-SiC and 6H-SiC. Comparison of the data for the two polytypes suggests that peaks at 0.67 ± 0.02 eV and 0.70 ± 0.02 eV in 6H substrates and 0.75 ± 0.02 eV in 4H substrates are related to V3+/4+ levels at the cubic sites. A peak at 0.87 ± 0.02 eV in the 6H sample is assigned to the same defect level at the hexagonal site and the associated transition in 4H was observed at 0.94 ± 0.02 eV in our spectra. The donor levels are thought to be related to peaks at 1.94 ± 0.05 eV and 1.87 ± 0.05 eV in 4H and 6H samples, respectively. The differences between the values obtained from the optical admittance measurements and those reported in the literature are attributed to thermal relaxation and/or contributions from defect complexes.


2019 ◽  
Vol 54 (15) ◽  
pp. 10798-10808 ◽  
Author(s):  
E. Igumbor ◽  
G. M. Dongho-Nguimdo ◽  
R. E. Mapasha ◽  
W. E. Meyer

Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Author(s):  
J.M. Bonar ◽  
R. Hull ◽  
R. Malik ◽  
R. Ryan ◽  
J.F. Walker

In this study we have examined a series of strained heteropeitaxial GaAs/InGaAs/GaAs and InGaAs/GaAs structures, both on (001) GaAs substrates. These heterostructures are potentially very interesting from a device standpoint because of improved band gap properties (InAs has a much smaller band gap than GaAs so there is a large band offset at the InGaAs/GaAs interface), and because of the much higher mobility of InAs. However, there is a 7.2% lattice mismatch between InAs and GaAs, so an InxGa1-xAs layer in a GaAs structure with even relatively low x will have a large amount of strain, and misfit dislocations are expected to form above some critical thickness. We attempt here to correlate the effect of misfit dislocations on the electronic properties of this material.The samples we examined consisted of 200Å InxGa1-xAs layered in a hetero-junction bipolar transistor (HBT) structure (InxGa1-xAs on top of a (001) GaAs buffer, followed by more GaAs, then a layer of AlGaAs and a GaAs cap), and a series consisting of a 200Å layer of InxGa1-xAs on a (001) GaAs substrate.


Sign in / Sign up

Export Citation Format

Share Document