Experimental Investigations on Water Absorption and Mechanical Properties of Expanded Perlite Thermal Insulation Mortar Under Accelerated and Natural Aging Conditions

2021 ◽  
Author(s):  
kelong Yuan ◽  
Jin Ye ◽  
Houren Xiong ◽  
Bin Sha ◽  
Tingting Wei ◽  
...  
2020 ◽  
Vol 833 ◽  
pp. 228-232
Author(s):  
Md. Jihad Miah ◽  
Mohammad Shamim Miah ◽  
Anisa Sultana ◽  
Taukir Ahmed Shamim ◽  
Md Ashraful Alom

This work performs experimental investigations on concrete made with difference replacement percentage of first-class burnt clay brick aggregate (0, 10, 20, 30, 40, 50, 60, 80, and 100%) by steel slag (SS) aggregate. The aim is to evaluate the mechanical properties as well as durability performances, additionally, water absorption porosity test is performed to investigate the influence of steel slag aggregate on the durability of tested concrete. The experimental results have shown that the compressive strength was improved significantly due to the replacement of brick aggregate by steel slag aggregate. The crushing strength of concrete made with 100% steel slag aggregate has gained up to 70% more than the control concrete (100% brick aggregate). However, the porosity of concrete was reduced with the adding percentage of brick aggregate by steel slag aggregate which is consistent with the compressive strength results. Further, a quite good agreement between compressive strength and porosity was observed as well.


2012 ◽  
Vol 560-561 ◽  
pp. 249-253 ◽  
Author(s):  
Blaž Skubic ◽  
Mitja Lakner ◽  
Igor Plazl

A new lightweight thermal insulation board, containing expanded perlite and inorganic silicate binder with corresponding industrial production procedure was developed. The industrial technology was developed in cooperation between company Trimo d.d. and Faculty of chemistry and chemical technology Ljubljana and among others includes mixing of raw materials, molding, microwave drying and high temperature treatment of the dried board. A new product has low density (130 – 160 kg/m3), good mechanical properties and durability and can be used in various fields where inorganic thermal insulation is required. The current work presents the experimental study of the final process during plate production – high temperature treatment with sintering. During thermal treatment of the board, certain shrinkage is required to obtain sufficient mechanical properties and durability. Controlling the process of high temperature thermal treatment is the key to achieve the right balance between low final density of the board and its good mechanical properties.


2016 ◽  
Vol 860 ◽  
pp. 73-77 ◽  
Author(s):  
Sergey Borisovich Vasilyev ◽  
Gennady Nikolaevich Kolesnikov ◽  
Aleksandr Vasilyevich Pitukhin ◽  
Nikolai Gennadievich Panov ◽  
Vadim Kostyukevich

The article presents the methods and the results of the experimental investigation of the additive influence of shungite nanopowder when mixed in the glue for three-ply particle board. The hypothesis of shungite nanopowder influence on physical-mechanical properties, water absorption and thickness swelling of wood particle board was formulated. The results of experimental investigations proved that the optimum shungite nanopowder quantity in glue solution makes up about 10 % of absolutely dry resin mass. Wooden particles of aspen and coniferous species, as well as glue solution based on carbamide-formaldehyde resin, were used in boards manufacturing. The samples were tested in order to determine physical-mechanical properties. It was found out that the 10 % shungite nanopowder additive increases the breaking point of three-ply particle board under bending strength by 18.3-25.7 %, the breaking point of three-ply particle board under tension perpendicular to the face of board by 7.5-11.7 %. As the result of experimental investigation it was found out that the 10 % shungite nanopowder when mixed in the glue decreases water thickness swelling of three-ply particle board up to 14.2 % and water absorption by 10.6-20.1 %. The shungite nanopowder powder contained particles of 50...100 nm in size and specific surface of 120 m2/g. In the course of the experiment three-ply particle boards were used with the thickness of 15.6 mm.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3287
Author(s):  
Indra Mawardi ◽  
Sri Aprilia ◽  
Muhammad Faisal ◽  
Samsul Rizal

Oil palm wood is the primary biomass waste produced from plantations, comprising up to 70% of the volume of trunks. It has been used in non-structural materials, such as plywood, lumber, and particleboard. However, one aspect has not been disclosed, namely, its use in thermal insulation materials. In this study, we investigated the thermal conductivity and the mechanical and physical properties of bio-insulation materials based on oil palm wood. The effects of hybridization and particle size on the properties of the panels were also evaluated. Oil palm wood and ramie were applied as reinforcements, and tapioca starch was applied as a bio-binder. Panels were prepared using a hot press at a temperature of 150 °C and constant pressure of 9.8 MPa. Thermal conductivity, bending strength, water absorption, dimensional stability, and thermogravimetric tests were performed to evaluate the properties of the panels. The results show that hybridization and particle size significantly affected the properties of the panels. The density and thermal conductivity of the panels were in the ranges of 0.66–0.79 g/cm3 and 0.067–0.154 W/mK, respectively. The least thermal conductivity, i.e., 0.067 W/mK, was obtained for the hybrid panels with coarse particles at density 0.66 g/cm3. The lowest water absorption (54.75%) and thickness swelling (18.18%) were found in the hybrid panels with fine particles. The observed mechanical properties were a bending strength of 11.49–18.15 MPa and a modulus of elasticity of 1864–3093 MPa. Thermogravimetric analysis showed that hybrid panels had better thermal stability than pure panels. Overall, the hybrid panels manufactured with a coarse particle size exhibited better thermal resistance and mechanical properties than did other panels. Our results show that oil palm wood wastes are a promising candidate for thermal insulation materials.


2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Rosana Gaggino ◽  
Jerónimo Kreiker ◽  
Celina Filippín ◽  
María Paz Sánchez Amono ◽  
Julián González Laría ◽  
...  

The objectives of this research were to estimate the thermal transmittance and some physical-mechanical properties of a housing cover built with roofing tiles made from recycled plastics and rubber and compare them with three other traditional solutions for housing cover: ceramic roofing tiles, concrete roofing tiles, and zinc sheets. This roofing tile has technical advantages over the others, due to its higher thermal insulation, higher resistance to freezing, higher resistance to hail, higher flexural resistance, lower specific weight, and lower water absorption, with lower cost than the traditional glazed black ceramic roofing tile. And it is also friendlier to the environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Waldemar Pichór ◽  
Adrian Kamiński ◽  
Paulina Szołdra ◽  
Maksymilian Frąc

This article presents the influence of granulated foam glass (GFG) on thermal insulation and mechanical properties of lightweight cement mortars. The mortars were additionally modified with addition of ground perlite dust. Ground expanded perlite waste was introduced into the cement matrix in the amounts of 10%, 20%, and 30% of cement mass. The results show that application of this waste increases the strength of the mortars as well as decreases their thermal conductivity coefficient. A series of mortars were prepared with introduction of granulated foam glass with mass per unit filler/cement ratio equal to 0.6, 0.9, and 1.2. The aggregate composition of GFG was combined from different monofractions in the range 0–2 mm so that it filled the mortar volume to the maximum. Additionally, mortars were made, in which 20% of 0–0.25 mm GFG volume was replaced with quartz sand with the same granulation. Each mortar series was modified with addition of ground perlite waste in the amount of 20% of cement mass. The results indicate an improvement of thermal insulation properties along with greater participation of perlite in the mortars. The increase of the thermal conductivity coefficient was observed in the mortars, where the GFG was replaced with quartz sand. Greater amount of GFG results in decrease of compressive strength, but it can be improved by replacing part of the lightweight filler with sand or by introducing the addition of ground expanded perlite to the matrix. This also results in lower water absorption of mortars. Research proved that in most cases, the addition of ground expanded perlite decreased the capillary sorption of mortars, as well as the water absorption coefficient by capillary action, with growing proportion of the lightweight filler.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4013 ◽  
Author(s):  
Matías Leyton-Vergara ◽  
Alexis Pérez-Fargallo ◽  
Jesús Pulido-Arcas ◽  
Galo Cárdenas-Triviño ◽  
Jeremy Piggot-Navarrete

This research aims at clarifying the influence of the granulometry of expanded perlite, on the thermal conductivity, structural strength, density, and water absorption of lightweight mortars. Three original perlite gradations have been obtained and three pairs of twin test mortars have been tested with those gradations. SEM tests have also been run to clarify the interaction, at a microscopic level, between the expanded perlite and the cement grouting. The results indicate that the mere manipulation of the granulometry may have a considerable and very beneficial effect on the mixture’s properties, such as thermal conductivity and water absorption.


2014 ◽  
Vol 711 ◽  
pp. 185-188
Author(s):  
Lin Lin Li ◽  
Guo Zhong Li

In this paper, desulfurization gypsum was made of cementing materials and expanded perlite as light aggregate, by adding the right amount of fly ash and other admixture, in the pouring forming preparation of desulfurization gypsum heat preservation material. Expanded perlite is porous surface, made its hydrophobic, lower water absorption, by emulsion coated surface of expanded perlite. In the waterproof property research, different emulsion composite waterproof contents on the influence of the bibulous rate of the product volumetric had been studied, and emulsion composite waterproof agent was chosen as the last agent with the dosage of 4%. SEM test for analyzing the microcosmic structure of desulfurization gypsum products were taken to research and analyze each combination, and discuss the waterproof and thermal insulation mechanism. The optimal parameters of the desulfurization gypsum of insulation products obtained by the experiments were: desulfurization gypsum of 90%, fly ash of 10%, and fiber of 0.5%, emulsion composite waterproof agent of 4%.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1522-1530
Author(s):  
Rawnaq S. Mahdi ◽  
Aseel B. AL-Zubidi ◽  
Hassan N. Hashim

This work reports on the incorporation of Flint and Kaolin rocks powders in the cement mortar in an attempt to improve its mechanical properties and produce an eco-friendly mortar. Flint and Kaolin powders are prepared by dry mechanical milling. The two powders are added separately to the mortars substituting cement partially. The two powders are found to improve the mechanical properties of the mortars. Hardness and compressive strength are found to increase with the increase of powders constituents in the cement mortars. In addition, the two powders affect water absorption and thermal conductivity of the mortar specimens which are desirable for construction applications. Kaolin is found to have a greater effect on the mechanical properties, water absorption, and thermal conductivity of the mortars than Flint. This behavior is discussed and analyzed based on the compositional and structural properties of the rocks powders.


Sign in / Sign up

Export Citation Format

Share Document