Single-Cell Transcriptomic Analysis of Tumor Heterogeneity and Intercellular Networks in Human Urothelial Carcinoma

2021 ◽  
Author(s):  
Xingwei Jin ◽  
Guoliang Lu ◽  
Fangxiu Luo ◽  
Junwei Pan ◽  
Tingwei Lu ◽  
...  
2018 ◽  
Vol 4 (4) ◽  
pp. 264-268 ◽  
Author(s):  
Hanna Mendes Levitin ◽  
Jinzhou Yuan ◽  
Peter A. Sims

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Lipin Loo ◽  
Jeremy M. Simon ◽  
Lei Xing ◽  
Eric S. McCoy ◽  
Jesse K. Niehaus ◽  
...  

2021 ◽  
Vol 24 (4) ◽  
pp. 572-583 ◽  
Author(s):  
Jacob A. Blum ◽  
Sandy Klemm ◽  
Jennifer L. Shadrach ◽  
Kevin A. Guttenplan ◽  
Lisa Nakayama ◽  
...  

Author(s):  
Thomas Strub ◽  
Arnaud Martel ◽  
Sacha Nahon-Esteve ◽  
Stéphanie Baillif ◽  
Robert Ballotti ◽  
...  

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Marilisa Montemurro ◽  
Elena Grassi ◽  
Carmelo Gabriele Pizzino ◽  
Andrea Bertotti ◽  
Elisa Ficarra ◽  
...  

Abstract Background Tumors are composed by a number of cancer cell subpopulations (subclones), characterized by a distinguishable set of mutations. This phenomenon, known as intra-tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs). Nowadays ITH can be assessed at the highest possible resolution using single-cell DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA) profiles from multiple samples of the same tumor can in principle be exploited to study the spatial distribution of subclones within a tumor mass. However, since the technology required to generate large scDNA sequencing datasets is relatively recent, dedicated analytical approaches are still lacking. Results We present PhyliCS, the first tool which exploits scCNA data from multiple samples from the same tumor to estimate whether the different clones of a tumor are well mixed or spatially separated. Starting from the CNA data produced with third party instruments, it computes a score, the Spatial Heterogeneity score, aimed at distinguishing spatially intermixed cell populations from spatially segregated ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as feature selection and dimensionality reduction methods, visualization tools and a flexible clustering module. Conclusions PhyliCS represents a valuable instrument to explore the extent of spatial heterogeneity in multi-regional tumour sampling, exploiting the potential of scCNA data.


Author(s):  
Cong He ◽  
Luoyan Sheng ◽  
Deshen Pan ◽  
Shuai Jiang ◽  
Li Ding ◽  
...  

High-grade glioma is one of the most lethal human cancers characterized by extensive tumor heterogeneity. In order to identify cellular and molecular mechanisms that drive tumor heterogeneity of this lethal disease, we performed single-cell RNA sequencing analysis of one high-grade glioma. Accordingly, we analyzed the individual cellular components in the ecosystem of this tumor. We found that tumor-associated macrophages are predominant in the immune microenvironment. Furthermore, we identified five distinct subpopulations of tumor cells, including one cycling, two OPC/NPC-like and two MES-like cell subpopulations. Moreover, we revealed the evolutionary transition from the cycling to OPC/NPC-like and MES-like cells by trajectory analysis. Importantly, we found that SPP1/CD44 interaction plays a critical role in macrophage-mediated activation of MES-like cells by exploring the cell-cell communication among all cellular components in the tumor ecosystem. Finally, we showed that high expression levels of both SPP1 and CD44 correlate with an increased infiltration of macrophages and poor prognosis of glioma patients. Taken together, this study provided a single-cell atlas of one high-grade glioma and revealed a critical role of macrophage-mediated SPP1/CD44 signaling in glioma progression, indicating that the SPP1/CD44 axis is a potential target for glioma treatment.


Sign in / Sign up

Export Citation Format

Share Document