Numerical Simulation of Three-Point Bending Test for Asphalt Mixtures

2022 ◽  
Author(s):  
Hongyan Ma ◽  
Peiyuan Cheng ◽  
Mengxi Lv ◽  
Liangliang Chen ◽  
Canlin Zhang
2021 ◽  
Vol 55 ◽  
pp. 1114-1121
Author(s):  
Daniel Jindra ◽  
Zdeněk Kala ◽  
Jiří Kala ◽  
Stanislav Seitl

2021 ◽  
Vol 1199 (1) ◽  
pp. 012055
Author(s):  
E Evin ◽  
S Nemeth

Abstract The research objective was to use numerical simulation to verify safety characteristics of deformation zone reinforcements subjected to bending, obtained from experimental results of the stretch-bending test. The methodology proposed for result verification by means of numerical simulation using a three-point bending test was verified on a sheet metal strip made of micro alloyed steel H 220 PD and a two-phase ferritic-martensitic steel DP 600. Material data for the material model according to Krupkovsky were determined in the tensile test. The measured data were processed tabularly and graphically. A comparison of the deformation work constant and the stiffness and deformation force constants shows that a very good match between the measured and the calculated characteristics has been achieved. Based on the data obtained, it can be assumed that it is possible to reduce the weight of deformation elements while maintaining the required safety characteristics by replacing micro alloyed steel H 220PD with the two-phase DP steel.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 811
Author(s):  
Pavla Vacková ◽  
Jan Valentin ◽  
Majda Belhaj

The paper presents the influence of laboratory aging simulation on fracture properties determined on 150 variants of asphalt mixtures. The fracture properties were determined by two different test approaches—semi-circular bending test (SCB test) and three-point bending test on beam specimens (3-PB test). The aging was simulated according to one of the methods defined in EN 12697-52 (storage of test specimens in chamber at temperature of 85 °C for 5 days). The evaluated group of variants covered asphalt mixtures for all road layers. The group was further divided according to used bituminous binder (unmodified vs. modified) and reclaimed asphalt content. The results showed that strength parameters (flexural strength and fracture toughness) increase with aging. It further shows that fracture work provides more complex information about the cracking behavior. For the aging indexes, it was found that for mixtures with modified binders and mixtures which did not contain reclaimed asphalt (RA), the values were higher. The aging indexes for fracture work showed different results for both performed tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Dae-Wook Park ◽  
Tam Minh Phan ◽  
Yeong-Min Kim

This study aims to evaluate the effect of different rejuvenators and antistripping agents on the healing performance of hot mix asphalt (HMA). Two damage HMA series (e.g., moisture damage and aged damage) were subjected to either induction or microwave heating. A PG64-22 virgin and aged binder were used and modified with several additives. Three long-term aged binders (e.g., PAV5, PAV15, and PAV20) were conducted by pressure aging vessel (PAV) test. The moisture damage series fabricating with a new binder was further categorized into four different freeze-thaw (FT) cycles (e.g., 0FT, 1FT, 3FT, and 5FT). Also, the aged series was fabricated with three different aged binders. A total of eight damage-healing cycles were applied to all asphalt mixtures, examined by the three-point bending test. The moisture resistance of modified asphalt mixture was examined by indirect tensile strength test. Overall, asphalt mixtures modified with either antistripping additives or rejuvenators not only obtained higher moisture resistance but also gained better healing performance under moisture damage. In addition, the study showed a probable correlation between moisture damage and long-term aging in terms of healing performance, such as PAV15 and 3FT cycles and PAV20 and 5FT cycles.


2018 ◽  
Vol 910 ◽  
pp. 111-116
Author(s):  
Minoru Yamashita ◽  
Naoki Kunieda ◽  
Makoto Nikawa

Three point bending test of aluminum tubular structure with hat cross-section was carried out under impact condition. The structures which were strengthened with carbon fiber reinforced thermoplastic sheet attached to hat-top or hat-side were also tested. When the structure made with only aluminum was bent, one-lobe deformation mode arose in most cases, where the buckling lobe was formed at center exhibiting very low deformation resistance. This mode was found to be attributed to the low friction at central anvil by conducting the numerical simulation. The energy absorption performance was evaluated for a variety of structures. When the sheet attachment was applied for the structure with one-lobe deformation mode, the absorbed energy was improved drastically.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhengjun Huang ◽  
Ying Zhang ◽  
Yuan Li ◽  
Dong Zhang ◽  
Tong Yang ◽  
...  

To accurately obtain the tensile strength of rock and fully understand the evolution process of rock failure is one of the key issues to the research of rock mechanics theories and rock mass engineering applications. Using direct tensile, Brazilian splitting, and three-point bending test methods, we performed indoor and numerical simulation experiments on marble, granite, and diabase and investigated the tensile strength and damage evolution process of several typical rocks in the three different tests. Our experiments demonstrate that (1) the strength is about 10% greater in the Brazilian splitting than in the direct tensile, while the tensile modulus is lower; it is the highest in the three-point bending, which is actually subjected to the bending moment and suggested as one of the indexes to evaluate the tensile strength of rock; (2) the strength in splitting tests is strikingly different, while the strain law is basically similar; the direct tensile test with precut slits is more attainable than that with no-cut slits, with an uninfluenced strength; (3) the failure modes of rocks using different methods are featured by different lithology, while their final modes are basically the same under the same method; (4) PFC and RFPA numerical simulation tests are effective to analyze the internal crack multiplication and acoustic emission changes in the rock as well as the damage evolution process of rock in different tests.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2015 ◽  
Vol 1100 ◽  
pp. 152-155
Author(s):  
Libor Topolář ◽  
Hana Šimonová ◽  
Petr Misák

This paper reports the analysis of acoustic emission signals captured during three-point bending fracture tests of concrete specimens with different mixture composition. Acoustic emission is an experimental tool well suited for monitoring fracture processes in material. The typical acoustic emission patterns were identified in the acoustic emission records for three different concrete mixtures to further describe the under-the-stress behaviour and failure development. An understanding of microstructure–performance relationships is the key to true understanding of material behaviour. The acoustic emission results are accompanied by fracture parameters determined via evaluation of load versus deflection diagrams recorded during three-point bending fracture tests.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


Sign in / Sign up

Export Citation Format

Share Document