Dominant Institutions: An Institutional Model of First Mover Strategy and Performance

2004 ◽  
Author(s):  
Krishna Udayasankar ◽  
Shobha S. Das
2018 ◽  
Vol 13 (7) ◽  
pp. 195
Author(s):  
Paul Ouma ◽  
James M. Kilika

The prevailing business environment is erratic and unreliable. The accomplishment of trade in such environment is determined by an organization’s capability to adjust and respond to environmental variation. Innovation strategies offer a strategic option that can be used to align organization’s assets and competencies with prospects in the external environment in order to heighten survival and long term success of an enterprise. Execution of such a strategic option is likely to result in strategic moves that will register impacts in the market which requires decision makers to consider the timing of their moves that operationalize the strategy in the market. The extant literature has pursued discussions on the construct of innovation strategy separately from that of first mover in spite of the implied indications that the two can be integrated into a strategic management phenomenon that will influence the firm’s performance. This study provides a review of existing theoretical and empirical literature on the perspectives connected to innovation strategies as a strategic option, first mover advantage in the phenomenon leading to performance in the context of microfinance setting. The applicable theories are reviewed, concepts and their operational indicators identified and matched against existing empirical work and nascent knowledge gaps identified. The study finally, suggests a theoretical framework appropriate for progressing knowledge in the field of study together with the associated inferences for future research.


2017 ◽  
Vol 1 (2) ◽  
Author(s):  
Jiang Wanxing ◽  
◽  
Li Ji ◽  
Liu Tao ◽  
Tao Xiaolong ◽  
...  

2016 ◽  
Vol 19 (5) ◽  
pp. 725-754 ◽  
Author(s):  
Tom P. Vandebroek ◽  
Brian T. McCann ◽  
Govert Vroom

The relationship between psychological pressure and performance outcomes has been studied across a variety of sporting contexts. As an extension and complement to recent empirical studies, we construct a formal model of soccer penalty shoot-outs to determine the links between psychological pressure and first-mover advantage (FMA). Our approach indicates that even seemingly simple competitive interactions may include a rich, complex set of effects. We demonstrate that psychological pressure leads to FMA in shoot-outs; however, we show that this relationship can vary depending on a variety of different factors, such as the nature of the pressure, the magnitude of the pressure, and the specific rules governing the shoot-out. Overall, our work clarifies and extends knowledge of the operation of FMA and of how psychological pressure impacts performance outcomes in competitive interactions.


Author(s):  
H. M. Thieringer

It has repeatedly been show that with conventional electron microscopes very fine electron probes can be produced, therefore allowing various micro-techniques such as micro recording, X-ray microanalysis and convergent beam diffraction. In this paper the function and performance of an SIEMENS ELMISKOP 101 used as a scanning transmission microscope (STEM) is described. This mode of operation has some advantages over the conventional transmission microscopy (CTEM) especially for the observation of thick specimen, in spite of somewhat longer image recording times.Fig.1 shows schematically the ray path and the additional electronics of an ELMISKOP 101 working as a STEM. With a point-cathode, and using condensor I and the objective lens as a demagnifying system, an electron probe with a half-width ob about 25 Å and a typical current of 5.10-11 amp at 100 kV can be obtained in the back focal plane of the objective lens.


Author(s):  
Huang Min ◽  
P.S. Flora ◽  
C.J. Harland ◽  
J.A. Venables

A cylindrical mirror analyser (CMA) has been built with a parallel recording detection system. It is being used for angular resolved electron spectroscopy (ARES) within a SEM. The CMA has been optimised for imaging applications; the inner cylinder contains a magnetically focused and scanned, 30kV, SEM electron-optical column. The CMA has a large inner radius (50.8mm) and a large collection solid angle (Ω > 1sterad). An energy resolution (ΔE/E) of 1-2% has been achieved. The design and performance of the combination SEM/CMA instrument has been described previously and the CMA and detector system has been used for low voltage electron spectroscopy. Here we discuss the use of the CMA for ARES and present some preliminary results.The CMA has been designed for an axis-to-ring focus and uses an annular type detector. This detector consists of a channel-plate/YAG/mirror assembly which is optically coupled to either a photomultiplier for spectroscopy or a TV camera for parallel detection.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


1986 ◽  
Vol 50 (5) ◽  
pp. 264-267 ◽  
Author(s):  
GH Westerman ◽  
TG Grandy ◽  
JV Lupo ◽  
RE Mitchell

Sign in / Sign up

Export Citation Format

Share Document