scholarly journals Theoretical and experimental study of deep soil compaction with a cone reamer

2021 ◽  
Vol 1 (3) ◽  
pp. 60-70
Author(s):  
Kudratullo Z. Tilloev

Introduction. The road-building machines and mechanisms are always improved depending on the tasks formed in the specific operating conditions of these machines. One of the problems of road construction in difficult climatic conditions is the lack of ground base strength, which results in road surface deformation during operation and periodic traffic restrictions, increasing the cost of maintenance. The road surface annual repair does not fundamentally solve the problem of the roads’ long-term and reliable performance. This problem can be solved by modernizing, for example, a working body for soil compaction based on a crawler excavator. Research aim is to develop a mathematical model for determining the dynamic characteristics of a cone reamer’s effective design to ensure deep compaction of soil foundations for highways and industrial and civil facilities. Research methodology is based on a system analysis of the basic tracked vehicle, the working body, and the compacted soil. The research methods also include mathematical modeling of the cone working body interaction with the soil. Results reliability is confirmed by comparing the results of numerical modeling and experimental studies. The discrepancy between the obtained results of mathematical modeling and laboratory tests in terms of torque and power does not exceed 7–10%. Conclusions. A method for determining the dynamic characteristics of cone devices is developed, and calculation formulas are derived for determining the tilting moment and torque that are applied to the shaft when compacting soils with different characteristics. Experimental studies have been conducted 70 "Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal". No. 3. 2021 ISSN 0536-1028 that have shown the efficiency of this working body. The developed method for determining the dynamic characteristics of cone devices is experimentally confirmed.

2018 ◽  
Vol 12 (3) ◽  
pp. 221-226 ◽  
Author(s):  
Andrzej Borawski

Abstract Among the many elements of a modern vehicle, the braking system is definitely among the most important ones. Health, and, frequently, life, may rest upon the design and reliability of brakes. The most common friction pair used in passenger cars today is a disc which rotates with the road wheel and a cooperating pair of brake pads. The composite material of the pad results in changing tribological properties as the pad wears, which was demonstrated in experimental studies. The change is also facilitated by the harsh operating conditions of brakes (high and rapid temperature changes, water, etc.). This paper looks into how changing tribology reflects on the heating process of disc and pads during braking. And so a simulation study was conducted, as this method makes it possible to measure temperature in any given point and at any time, which is either impossible or extremely difficult in real life conditions. Finite element method analyses were performed for emergency braking events at various initial speeds of the vehicle reflecting the current road speed limits.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012080
Author(s):  
Xiuhao Xi ◽  
Jun Xiao ◽  
Qiang Zhang ◽  
Yanchao Wang

Abstract For the problem of road surface condition recognition, this paper proposes a real-time tracking method to estimate road surface slope and adhesion coefficient. Based on the fusion of dynamics and kinematics, the current road slope of the vehicle which correct vertical load is estimated. The effect of the noise from dynamic and kinematic methods on the estimation results is removed by designing a filter. The normalized longitudinal force and lateral force are calculated by Dugoff tire model, and the Jacobian matrix of the vector function of the process equation is obtained by combining the relevant theory of EKF algorithm. The road adhesion coefficient is estimated finally. The effectiveness of the algorithm is demonstrated by analyzing the results under different operating conditions, such as docking road and bisectional road, using a joint simulation of Matlab/Simulink and Carsim.


Author(s):  
Katsuhide Fujita ◽  
Takashi Saito ◽  
Mitsugu Kaneko

When agricultural machines are operated on pavements, the vibration and noise caused by the interaction between the tire lugs and the road surface are inevitable. In conventional studies, it is considered that the dynamic behavior of a rolling agricultural tire is influenced by the vibration characteristics of the tire. Resonance occurs when the lug excitation frequency of the tire, which is defined as the lug number multiplied by the number of revolutions of the tire, becomes equal to the natural frequency of the tire. In other words, the rolling tire shows large vibrations in the direction of the natural mode corresponding to the natural frequency of the tire. However, in the conventional equipment, the diameter of the drum is smaller than that of the tire. Therefore, the real running condition on the road was not realized by the rolling test using the conventional equipment. In this study, a new equipment is produced to realize the running condition in the rolling test. The dynamic and vibratory characteristics of operating agricultural machine are investigated by using this new equipment. The obtained results are compared to the conventional ones and the influence of the running condition on dynamic characteristics of rolling tire is investigated.


2020 ◽  
Vol 6 (2) ◽  
pp. 85-93
Author(s):  
Timur A. Raianov

Background: In recent years, modern strain gauge systems for measuring, which are used in automobile, railway, aviation, and ship transport, as well as in the pulp, paper, and metallurgical industries, have become extremely popular. These metrological systems provide accurate measurement in difficult operating conditions. The most popular among sensors are strain gauges, they are increasingly used in various areas of marine operations and legal proceedings. They are the optimal solution in the field of torque measurement. Aim: The program creates a model of a strain gauge measurement system. Analysis of power output characteristics. Methods: The article describes the construction of a mathematical model of the strain gauge measurement system. The MATLAB SIMULINK library was used for simulation. The work is based on mathematical modeling and is aimed at creating a computer-based strain gauge model. The output characteristics are analyzed. The accuracy of the software model measurement was verified by checking the convergence of the actual and measured values. Results: A software model of the strain gauge force measurement system was created to create a real computer strain gauge measurement system. Output characteristics are obtained. Conclusions: A software model of the strain gauge measurement system is proposed; The output characteristics were studied and the measurement accuracy was checked.


2021 ◽  
Vol 7 (3) ◽  
pp. 150-157
Author(s):  
Alexander A. Lychkovskiy

Background: The analysis of the complex technology of the construction of the roadbed, developed in RUT (MIIT), with the aim of its modernization on the basis of monitoring changes in the characteristics of the soil with the use of fiber-optic cable during construction. Aim: Development of intensive technological modes for improving the reliability of the road surface. Methods: Methods of control and technological regulation of soil compaction in order to reduce humidity at the stage of frost moisture accumulation at the base of the embankment being built. Results: As a result of the analysis, the modernization of the integrated technology is appropriate. Conclusion: The proposed methods of technological regulation are effective in the construction of the roadbed on waterlogged soils.


2020 ◽  
Vol 7 (1) ◽  
pp. 79
Author(s):  
Simon Ka'ka ◽  
Festo Andre H

This study aims to examine more about the effect of vertical dynamic load of vehicles and changes in dimensional barriers on the road surface in its path. Experimentally this fluctuating load is replaced by a pneumatic force change based on the regulation of air pressure on the regulator. The deviations generated by the varying load work are measured by placing a proximity sensor along the spring movement. The amount of vertical load transformation reaches the road surface is measured by using Load cell. Characteristics of vertical dynamic vibration occurring due to several dimensional barriers, U (cm) obtained using mathematical modeling method with 2 DOF suspension system transfer function.  The results showed a condition on the body and wheels of vehicles experienced a brief overshot for 0.14 seconds with deviation of 0.178 m. From the graph shows that the rate of deviation that occurs is large enough that Y2d = 1.03 m / s caused by a sudden shock that occurred on the wheels of the vehicle. This condition does not last long that is only duration t = 0.22 s, because the spring reaction force and shock absorber can absorb 25% vibration against the sprung and un-sprung vertical load of the vehicle.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Daniele Pochi ◽  
Roberto Fanigliulo ◽  
Laura Fornaciari ◽  
Gennaro Vassalini ◽  
Marco Fedrizzi ◽  
...  

In recent years the comfort and the preservation of the health of the operators became central issues in the evolution of agricultural machinery and led to the introduction of devices aimed at improving working conditions. Thereby, for instance, the presence of air conditioner, soundproof cab and driver seat suspension became normal on agricultural tractors. The vibrations are one of the most complex issues to deal with, being determined by the characteristics and interaction of elements such as tyres, axles, mainframe, cab and seat suspension. In this respect, manufacturers are trying to improve their products, even integrating these elements with new devices such as the suspension on the front axle of the tractor, aimed at reducing the level of vibrations during the transfers at high speed. One of these underwent tests at CRA-ING. Since its purpose is to reduce the level of vibration transmitted to the driver, their measurements in different points of the tractor and in different operating conditions, were compared in order to evaluate the effectiveness of the device, expressed as time of exposure. The suspension system of the front axle is designed to absorb the oscillations (especially pitching) determined by irregularities in the road surface, allowing an increased control of the vehicle at high speed, as demonstrated by the test results and confirmed by the driving impressions outlined by the operator. The action of the device under these conditions results in an increase of the exposure time, important fact because of the relevance of the road transfer operations of tractors with mounted implements or trailers to tow and of the tendency to increase the speed limit for the road tractors (in Germany were brought to 50 km h–1 for several years). The action just described is less evident with increasing irregularity of the road surface and with the decrease of the travel speed. Nevertheless, in such conditions, the device appears to positively work along the other directions, in particular in the Z-axis, improving the action of the suspension of the driver seat.


2022 ◽  
Vol 4 (6) ◽  
pp. 48-68
Author(s):  
S. Plehanova ◽  
N. Vinogradova

the advantage of the equality indicator is the relative simplicity of definition and the possibility of periodic moni-toring. According to the equality indicator, it is possible to assign repairs and predict the service life, assess the condition of the road surface. Experimental studies have proved that there is a connection between the evenness of the coating and the strength of the pavement, which opens up the possibility of determining the structural strength of non-rigid pavement, which provides a given evenness of the coating for the last year of operation be-fore major repairs. The question of assessing the impact of the unevenness of the road surface on the processes of development and accumulation of deformations, changes in the evenness of the coating during operation remain largely open. This is due to the multifactorial nature of the problem of predicting the equality of coverage, so it is advisable to use approaches based on direct measurement methods. Most of the existing models of interaction of a pneumatic or rigid wheel with a coating are designed for problems of pavement mechanics or car theory, therefore they cannot be unambiguously applied to determine the value of the dynamism coefficient. A significant disad-vantage of these solutions is insufficient consideration of the deformative properties (modulus of elasticity) of the pavement.


2013 ◽  
Vol 41 (4) ◽  
pp. 248-260
Author(s):  
Peter Kindt ◽  
Cristobal Gonzalez Diaz ◽  
Stijn Vercammen ◽  
Christophe Thiry ◽  
Jason Middelberg ◽  
...  

ABSTRACT Based on the results of experimental and numerical analyses, we investigate the effects of rotation on tire dynamic behavior. Better understanding of these effects will further improve the ability to control and optimize the noise and vibrations that result from the interaction between the road surface and the rolling tire. The presented work was performed in the framework of the European industry-academia project Tire-Dyn, with partners Goodyear, Katholieke Universiteit Leuven, and LMS International. The effect of rotation on the tire dynamic behavior is quantified for different operating conditions of the tire, such as load and rotation speed. Through combined experimental and numerical analyses, the physical phenomena accounting for the observed rotation influences are described.


Sign in / Sign up

Export Citation Format

Share Document