scholarly journals Static, Free Vibration and Buckling Analysis of Composite Panels; A Review

2020 ◽  
Vol 9 (1) ◽  
pp. 21-45
Author(s):  
Sreadha A R ◽  
Chitaranjan Pany

A composite material is generally a combination of materials differing in composition or form on a macro scale for the purposes of attaining specific characteristics and properties. The developments in the field of composite materials have granted significant weight reduction in structural design. When compared to metallic materials, composites offer many advantages, especially high strength, stiffness to weight ratio, excellent fatigue properties, and corrosion resistance. Plates, curved panels, the cylindrical shell-shaped forms of models are being broadly used in many structural packages of engineering structure. For design the structure, it is important to know the behaviour of these under static, free vibration, buckling condition. The present paper aims to review the literature on static, free vibration, and buckling analysis of composite flat panel, curved panel, and cylindrical shell. Further, the testing procedure of laminate, design guidelines of laminates and cost estimations with mechanical properties comparison of laminate with metal, CLT (classical lamination theory) basis including thermal and moisture expansion for stiffness evaluation are also summarised in this paper.

Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Tungum alloy combines an unusually high strength-to-weight ratio, with ductility, excellent corrosion resistance, and good fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-806. Producer or source: Tungum Ltd.


Author(s):  
Oritonda Muribwathoho ◽  
Sipokazi Mabuwa ◽  
Velaphi Msomi

Aluminium alloys have evolved as suitable materials for automotive and aircraft industries due to their reduced weight, excellent fatigue properties, high-strength to weight ratio, high workability/formability, and corrosion resistance. Recently, the joining of similar and dissimilar metals have achieved huge success in various sectors. The processing of soft metals like aluminium, copper, iron and nickel have been fabricated using friction stir processing. Friction stir processing (FSP) is a microstructural modifying technique that uses the same principles as the friction stir welding technique. In the majority of studies on FSP, the effect of process parameters on the microstructure was characterized after a single pass. However, multiple passes of FSP is another method to further modify the microstructure in aluminium castings. This study is aimed at reviewing the impact of multi-pass friction stir processed joints of aluminium alloys and to identify a knowledge gap. From the literature that is available on multi-pass FSP, it has been observed that the majority of the literature focused on the processing of plates than the joints. There is limited literature reporting on multi-pass friction stir processed joints. This then creates a need to study further on multi-pass friction stir processing on dissimilar aluminium alloys.


Author(s):  
Abhishek Sonate ◽  
Dheeraj Vepuri ◽  
Sagil James

Carbon fiber reinforced plastic (CFRP) composite is one of the most sought after material owing to its superior physical and mechanical properties such as high-durability and high strength-to-weight ratio. CFRP composites are often used by stacking up with titanium (Ti) to form multi-layered material stacks for applications involving extreme mechanical loads. However, machining of CFRP/Ti multi-stacks is quite complex and challenging task since both materials are difficult-to-machine materials and show completely different machinability properties. The challenge is further escalated when there is a need to machine CFRP/Ti stacks at micron level. Several problems arise during the machining process due to the non-homogeneous structure, anisotropic and abrasive properties of composite. Traditional methods of micromachining the CFRP/Ti stacks results in several issues including high cutting force and torque and high tool wear, composite delamination, large groove depth in composite, and poor surface quality. Ultrasonic machining (USM) process has been successfully used to machine titanium, CFRP and CFRP/Ti stack at macro scale. Micro Ultrasonic machining is a downsized version of macro ultrasonic machining process that is developed to machine hard and brittle materials. This research explores the possibility of using Micro USM process to conduct micromachining of CFRP/Ti multi stacks. The effect of various process parameters including abrasive grit size, tool material and type on the material removal process is studied. The study found that micro ultrasonic machining process is capable of successfully micromachining CFRP/Ti stacks with zero CFRP delamination, minimal variation in CFRP and Ti hole sizes and longer tool life. Further, a three-dimensional finite element simulation study is performed on micro ultrasonic machining of CFRP/Ti stacks. The simulation results revealed that the workpiece is not subject to any significant normal stresses during the machining process, while variations in shear stresses is seen on the inside surfaces of the machined cavities.


2012 ◽  
Vol 517 ◽  
pp. 763-770
Author(s):  
Yang Zhang ◽  
Jun Feng Qiu ◽  
Hei Bai

In order to increase live-load carrying capacity and life of bridges, aluminum alloy bridge decks have been widely used in bridge structures for more than 70 years because of the features of high strength-to-weight ratio, excellent corrosion resistance, ease of fabrication and recovery, rapid construction, maintenance-free and cost effective. First, this paper provides in detail the advantages of aluminum alloy bridge decks and the main areas of aluminum alloy applications in bridges can also be pointed out. Then, a brief overview of typical application examples and structural shapes of aluminum alloy bridge decks are introduced. At the same time, a state-of-the-art review on the researches of aluminum alloy bridge decks, related to static behaviors, fatigue properties, dynamic responses, structural systems and cost effective, is presented. Finally, the perspectives of research and development on aluminum alloy bridge decks are discussed.


2021 ◽  
Author(s):  
P. G. Vivek ◽  
Ankuran Saha ◽  
Apurba Das ◽  
Kazuaki Inaba ◽  
Amit Karmakar

Abstract Composites are favored over other traditional materials in many aerospace applications because of their high stiffness and strength-to-weight ratio. Taylor made material properties can be achieved by scheming the structural parameters making the material light, high strength and durable. Present work deals with a novel approach to enhance the strength of a layered delaminated composite beam using roller clamps to improve stiffness by providing uniform transverse force. Composite beam stiffness significantly degrades due to adverse environmental condition, impact loading and delamination effect. Composite structures are prone to delamination during its life span. Therefore in depth knowledge is needed to find the effect of roller clamps on the dynamic behavior of beam with varying delamination sizes. Present approach will be useful to enhance the stiffness of composite structure with delamination. The free vibration of a clamped cantilever beam is investigated, and the results are compared to those of an unclamped and undelaminated beam. The findings are supported by experimentally obtained responses (modal analysis). Furthermore, the complex activity of the laminated structure is numerically computed and the obtained data is compared to those available in open literature to ensure correctness. The laminated composite beam’s static and free vibration responses are calculated using finite element simulation software (ANSYS).


the need for the high strength to weight structures is increasing day by day. The structures with high strength to weight ratio helps in reducing the costs in transport of materials. The sandwich structures are being developed to meet this criterion. A sandwich structure consists of two flat sheets with core between them. The material of core and outer flat surfaces may or may not be the same depending upon the application of the structure. In this project, the corrugated core sandwich structure will be used for the cylindrical shell of the pressure vessels. Pressure vessel with corrugated core sandwich structures will be designed and various analyses will be performed. The results will be compared with thin cylindrical shell pressure vessel under similar conditions. The pressure vessels will be designed in solidworks software and structural analysis will be performed in ansys workbench.


Author(s):  
Muhsin Aljuboury ◽  
Md Jahir Rizvi ◽  
Stephen Grove ◽  
Richard Cullen

Metallic bolted flanges and pipes have both been increasingly replaced by fibre-reinforced polymer materials in many applications which deal with extreme harsh environments such as oil, chemical, marine, etc. This is not only due to the fibre-reinforced polymer material’s resistance to the chemical reaction but also due to their inherent mechanical properties of high strength to weight ratio. However, very little research has been published regarding bolted flange joints made of fibre-reinforced polymer materials. Also, the availability of standards and relevant design codes are very limited for bolted fibre-reinforced polymer flange joints. Hence, the design guidelines, dimensional considerations and selection of fabrication methods for the bolted fibre-reinforced polymer flange joints have yet to be optimized fully. For instance, the ASME Boiler and Pressure Vessel Code, section X and ASME PCC-1-2013 appendix O or other similar standards do not include specific rules for the design of the bolted fibre-reinforced polymer flange joints. As a result, it is difficult to understand the consequences on the reliability of fibre-reinforced polymer flanges made with parametric variations and dimensional alterations. This has led the authors to carry out research to maximise the performance of the bolted fibre-reinforced polymer flange joints through a series of experimenters and numerical simulations. The present article will focus on the available techniques to manufacture the bolted fibre-reinforced polymer flanges along with the associated issues and possible challenges compared to metallic flanges.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract COPPER ALLOY No. 510 is a tin bronze containing about 0.25% phosphorus. It combines high strength and toughness with excellent fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-238. Producer or source: Brass mills.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Sign in / Sign up

Export Citation Format

Share Document