scholarly journals Ground-state Shallow-donor Binding Energy in (In,Ga)N/GaN Double QWs Under Temperature, Size, and the Impurity Position Effects

2021 ◽  
Vol 4 (1) ◽  
pp. 1-6
Author(s):  
Redouane En-nadir ◽  
Haddou El Ghazi ◽  
Anouar Jorio ◽  
Izeddine Zorkani

In this paper, we study the hydrogen-like donor-impurity binding energy of the ground-state change as a function of the well width under the effect of temperature, size, and impurity position. Within the framework of the effective mass approximation, the Schrodinger-Poisson equation has been solved taken account an on-center hydrogen-like impurity in double QWs with rectangular finite confinement potential profile for 10% of indium concentration in the (well region). The eigenvalues and their correspondent eigenvectors have been obtained by the fined element method (FEM). The obtained results are in good agreement with the literature and show that the temperature, size, and the impurity position have a significant impact on the binding energy of a hydrogen-like impurity in symmetric double coupled quantum wells based on non-polar wurtzite (In,Ga) N/GaN core/Shell.

2006 ◽  
Vol 20 (18) ◽  
pp. 1127-1134 ◽  
Author(s):  
A. JOHN PETER

The binding energy of a shallow hydrogenic impurity of a spherical quantum dot confined by harmonic oscillator-like and by rectangular well-like potentials, using a variational procedure within the effective mass approximation, has been determined. The calculations of the binding energy of the donor impurity as a function of the system geometry, and the donor impurity position have been investigated. The binding energy of shallow donor impurity depends not only on the quantum confinements but also on the impurity position. Our results reveal that (i) the donor binding energy decreases as the dot size increases irrespective of the impurity position, and (ii) the binding energy values of rectangular confinement are larger than the values of parabolic confinement and (iii) the rectangular confinement is better than the parabolic confinement in a spherical quantum dot.


2020 ◽  
Vol 330 ◽  
pp. 01012
Author(s):  
Walid Belaid ◽  
Haddou El Ghazi ◽  
Izeddine Zorkani ◽  
Anouar Jorio

In the present paper, the binding energy of hydrogenic shallow-donor impurity in simple and double coupled quantum wells based on unstrained wurtzite (In,Ga)N/GaN is investigated. Considering the effective-mass and dielectric mismatches between the well and its surrounding matrix, the numerical calculations are performed within the framework of the parabolic band and the single band effective-mass approximations under the finite potential barrier using finite element method (FEM). According to our results, it appears that the main effect of the wells coupling is to enhance the binding energy. It is also obtained that the binding energy is strongly sensitive to the internal and external parameters and can be adjusted by the quantum well/barrier width, the impurity position and the internal Indium composition. Our results are in good agreement with the finding especially for those obtained by the variational approach.


2005 ◽  
Vol 12 (02) ◽  
pp. 155-159 ◽  
Author(s):  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

Using a variational approach, we have investigated the effects of the hydrostatic pressure, the well dimension, impurity position and electric field direction on the binding energy of shallow donor impurities in GaAs/GaAlAs graded quantum well (GQW). We have found that the changes in donor binding energy in GQW strongly depend not only on the quantum confinement, but also on the hydrostatic pressure, on the direction of the electric field and on the impurity position.


2011 ◽  
Vol 25 (32) ◽  
pp. 2451-2459 ◽  
Author(s):  
U. YESILGUL ◽  
F. UNGAN ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

The intersubband transitions and impurity binding energy in differently shaped semiconductor quantum wells under a magnetic field are calculated using a variational method within the effective mass approximation. Our calculations have revealed the dependence of the intersubband transitions and impurity binding energy on the magnetic field strength and the shape of the quantum wells.


2010 ◽  
Vol 24 (28) ◽  
pp. 2793-2801
Author(s):  
ZAIPING ZENG ◽  
SHUYI WEI ◽  
JINGBO WEI

Based on the effective-mass approximation, considering the built-in electric field effect due to the spontaneous and piezoelectric polarizations, the ground-state donor binding energy of a hygrogenic impurity in a cylindrical wurzite (WZ) ZnO / MgZnO strained quantum dot (QD) is investigated variationally. Numerical results show that the ground-state donor binding energy is highly dependent on the Mg composition, the impurity positions and the QD size. The built-in electric field also induces an asymmetric distribution of the ground-state donor binding energy with respect to the center of the QD. In particular, it is found that the ground-state donor binding energy is insensible to the dot height when the impurity is located at the right boundary of the WZ ZnO / MgZnO strained QD if the dot height is large.


2002 ◽  
Vol 09 (05n06) ◽  
pp. 1753-1756 ◽  
Author(s):  
A. MONTES ◽  
A. L. MORALES ◽  
C. A. DUQUE

The present work investigates the effects of the hydrostatic pressure and the external applied electric field on the binding energy for shallow donor impurities in GaAs–Ga 1 - x Al x As quantum wells. The effective mass approximation is used and a trial envelope wave function is adopted for the impurity carrier. For fixed well width and applied electric field, the binding energy of the shallow donor impurity is enhanced by increasing the external hydrostatic pressure, and for fixed well width and hydrostatic pressure, the binding energy decreases by increasing the external electric field.


2021 ◽  
Vol 16 (1) ◽  
pp. 97-103
Author(s):  
Xin-Nan Li ◽  
Guang-Xin Wang ◽  
Xiu-Zhi Duan

A variational approach is utilized to investigated the electron-impurity interaction in zinc-blende (In,Ga)N-GaN strained coupled quantum wells. The donor imputrity states are studied in consideration of the effects of hydrostatic pressure and external electric field. Our results indicate that the binding energy visibly depends on hydrostatic pressure, strain of coupled quantum wells, and applied electric field. The binding energy demonstrates a peak value with the reduction of the left-well width, and which displays a minimum value with the increment of the middle-barrier width. A decreasing behavior on the binding energy is also demonstrated when the right-well width enhances. Also the binding energy augments constantly with the increasing hydrostatic pressure. Besides, the dependency of the binding energy on variation of impurity position has been analyzed detailedly.


2012 ◽  
Vol 26 (06) ◽  
pp. 1250013 ◽  
Author(s):  
F. UNGAN ◽  
U. YESILGUL ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SOKMEN

The effects of nitrogen and indium mole concentration on the intersubband optical absorption for (1–2) transition and the binding energy of the shallow-donor impurities in a Ga 1-x In x N y As 1-y/ GaAs / Al 0.3 Ga 0.7 As quantum well under the electric field is theoretically calculated within the framework of the effective-mass approximation. Results are obtained for several concentrations of nitrogen and indium, and the applied electric field. The numerical results show that the intersubband transitions and the impurity binding energy strongly depend on the nitrogen and indium concentrations.


2013 ◽  
Vol 380-384 ◽  
pp. 4284-4289
Author(s):  
Guang Xin Wang ◽  
Xiu Zhi Duan

Based on the the effective mass approximation and variational approach, the donor impurity states confined in self-formed GaAs/AlxGa1-xAs quantum rings (QRs) are investigated theoretically. A uniform electric field is applied along the growth direction of the QR. The different effective masses in the different regions of the GaAs/AlxGa1-xAs QR are taken into consideration. Numerical results show that the binding energy of a donor impurity increases gradually, reaches a maximum value, and then decreases quickly to the special value as the QR height decreases. Given a fixed QR size, the binding energy increases for the impurity located at the center of the QR when the Al composition increases. In addition, it can also be found that when the applied electric field strength increases, the donor binding energy increases for impurities localized at the negative z axis of the QR; however, the donor binding energy decreases slightly for impurities located at the center and positive z axis of the QR.


Sign in / Sign up

Export Citation Format

Share Document