scholarly journals Relative anomalies in (2+1)D symmetry enriched topological states

2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maissam Barkeshli ◽  
Meng Cheng

Certain patterns of symmetry fractionalization in topologically ordered phases of matter are anomalous, in the sense that they can only occur at the surface of a higher dimensional symmetry-protected topological (SPT) state. An important question is to determine how to compute this anomaly, which means determining which SPT hosts a given symmetry-enriched topological order at its surface. While special cases are known, a general method to compute the anomaly has so far been lacking. In this paper we propose a general method to compute relative anomalies between different symmetry fractionalization classes of a given (2+1)D topological order. This method applies to all types of symmetry actions, including anyon-permuting symmetries and general space-time reflection symmetries. We demonstrate compatibility of the relative anomaly formula with previous results for diagnosing anomalies for \mathbb{Z}_2^{T}ℤ2T space-time reflection symmetry (e.g. where time-reversal squares to the identity) and mixed anomalies for U(1) \times \mathbb{Z}_2^{T}U(1)×ℤ2T and U(1) \rtimes \mathbb{Z}_2^{T}U(1)⋊ℤ2T symmetries. We also study a number of additional examples, including cases where space-time reflection symmetries are intertwined in non-trivial ways with unitary symmetries, such as \mathbb{Z}_4^{T}ℤ4T and mixed anomalies for \mathbb{Z}_2 \times \mathbb{Z}_2^{T}ℤ2×ℤ2T symmetry, and unitary \mathbb{Z}_2 \times \mathbb{Z}_2ℤ2×ℤ2 symmetry with non-trivial anyon permutations.

Science ◽  
2019 ◽  
Vol 363 (6429) ◽  
pp. eaal3099 ◽  
Author(s):  
Xiao-Gang Wen

It has long been thought that all different phases of matter arise from symmetry breaking. Without symmetry breaking, there would be no pattern, and matter would be featureless. However, it is now clear that for quantum matter at zero temperature, even symmetric disordered liquids can have features, giving rise to topological phases of quantum matter. Some of the topological phases are highly entangled (that is, have topological order), whereas others are weakly entangled (that is, have symmetry-protected trivial order). This Review provides a brief summary of these zero-temperature states of matter and their emergent properties, as well as their importance in unifying some of the most basic concepts in nature.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Libo Zhang ◽  
Zhiqingzi Chen ◽  
Kaixuan Zhang ◽  
Lin Wang ◽  
Huang Xu ◽  
...  

AbstractThe advent of topological semimetals enables the exploitation of symmetry-protected topological phenomena and quantized transport. Here, we present homogeneous rectifiers, converting high-frequency electromagnetic energy into direct current, based on low-energy Dirac fermions of topological semimetal-NiTe2, with state-of-the-art efficiency already in the first implementation. Explicitly, these devices display room-temperature photosensitivity as high as 251 mA W−1 at 0.3 THz in an unbiased mode, with a photocurrent anisotropy ratio of 22, originating from the interplay between the spin-polarized surface and bulk states. Device performances in terms of broadband operation, high dynamic range, as well as their high sensitivity, validate the immense potential and unique advantages associated to the control of nonequilibrium gapless topological states via built-in electric field, electromagnetic polarization and symmetry breaking in topological semimetals. These findings pave the way for the exploitation of topological phase of matter for high-frequency operations in polarization-sensitive sensing, communications and imaging.


1995 ◽  
Vol 10 (06) ◽  
pp. 515-524 ◽  
Author(s):  
J. M. FIGUEROA-O'FARRILL ◽  
C. M. HULL ◽  
L. PALACIOS ◽  
E. RAMOS

The conventional quantization of w3-strings gives theories which are equivalent to special cases of bosonic strings. We explore whether a more general quantization can lead to new generalized W3-string theories by seeking to construct quantum BRST charges directly without requiring the existence of a quantum W3-algebra. We study W3-like strings with a direct space-time interpretation — that is, with matter given by explicit free field realizations. Special emphasis is placed on the attempt to construct a quantum W-string associated with the magic realizations of the classical w3-algebra. We give the general conditions for the existence of W3-like strings, and comment on how the known results fit into our general construction. Our results are negative: we find no new consistent string theories, and in particular rule out the possibility of critical strings based on the magic realizations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Vadim Grinenko ◽  
Debarchan Das ◽  
Ritu Gupta ◽  
Bastian Zinkl ◽  
Naoki Kikugawa ◽  
...  

AbstractThere is considerable evidence that the superconducting state of Sr2RuO4 breaks time reversal symmetry. In the experiments showing time reversal symmetry breaking, its onset temperature, TTRSB, is generally found to match the critical temperature, Tc, within resolution. In combination with evidence for even parity, this result has led to consideration of a dxz ± idyz order parameter. The degeneracy of the two components of this order parameter is protected by symmetry, yielding TTRSB = Tc, but it has a hard-to-explain horizontal line node at kz = 0. Therefore, s ± id and d ± ig order parameters are also under consideration. These avoid the horizontal line node, but require tuning to obtain TTRSB ≈ Tc. To obtain evidence distinguishing these two possible scenarios (of symmetry-protected versus accidental degeneracy), we employ zero-field muon spin rotation/relaxation to study pure Sr2RuO4 under hydrostatic pressure, and Sr1.98La0.02RuO4 at zero pressure. Both hydrostatic pressure and La substitution alter Tc without lifting the tetragonal lattice symmetry, so if the degeneracy is symmetry-protected, TTRSB should track changes in Tc, while if it is accidental, these transition temperatures should generally separate. We observe TTRSB to track Tc, supporting the hypothesis of dxz ± idyz order.


1988 ◽  
Vol 03 (08) ◽  
pp. 1959-1979 ◽  
Author(s):  
CHIA-HSIUNG TZE

We present an alternative formulation of Polyakov’s regularization of Gauss’ integral formula for a single closed Feynman path. A key element in his proof of the D=3 fermi-bose transmutations induced by topological gauge fields, this regularization is linked here with the existence and properties of a nontrivial topological invariant for a closed space ribbon. This self-linking coefficient, an integer, is the sum of two differential characteristics of the ribbon, its twisting and writhing numbers. These invariants form the basis for a physical interpretation of our regularization. Their connection to Polyakov’s spinorization is discussed. We further generalize our construction to the self-linking, twisting and writhing of higher dimensional d=n (odd) submanifolds in D=(2n+1) space-time. Our comprehensive analysis intends to supplement Polyakov’s work as it identifies a natural path to its higher dimensional mathematical and physical generalizations. Combining the theorems of White on self-linking of manifolds and of Adams on nontrivial Hopf fibre bundles and the four composition-division algebras, we argue that besides Polyakov’s case where (d, D)=(1, 3) tied to complex numbers, the potentially interesting extensions are two chiral models with (d, D)=(3, 7) and (7, 15) uniquely linked to quaternions and octonions. In Memoriam Richard P. Feynman


Pramana ◽  
2010 ◽  
Vol 74 (4) ◽  
pp. 513-523 ◽  
Author(s):  
P. K. Chattopadhyay ◽  
B. C. Paul

2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Xiao-Gang Wen

We review the progress in the last 20–30 years, during which we discovered that there are many new phases of matter that are beyond the traditional Landau symmetry breaking theory. We discuss new “topological” phenomena, such as topological degeneracy that reveals the existence of those new phases—topologically ordered phases. Just like zero viscosity defines the superfluid order, the new “topological” phenomena define the topological order at macroscopic level. More recently, we found that at the microscopical level, topological order is due to long-range quantum entanglements. Long-range quantum entanglements lead to many amazing emergent phenomena, such as fractional charges and fractional statistics. Long-range quantum entanglements can even provide a unified origin of light and electrons; light is a fluctuation of long-range entanglements, and electrons are defects in long-range entanglements.


Sign in / Sign up

Export Citation Format

Share Document