scholarly journals Prognostic Model Construction and Immune Microenvironment Analysis of Breast Cancer Based on Ferroptosis-Related lncRNAs

2021 ◽  
Vol Volume 14 ◽  
pp. 9817-9831
Author(s):  
Cong Li Jia ◽  
Fu Yang ◽  
Ruining Li
2021 ◽  
Author(s):  
Congli Jia ◽  
Fu Yang ◽  
Ruining Li

Abstract Background: Breast cancer (BC) is the most common cancer among women, with high rates of metastasis and recurrence. Some studies have confirmed that pyroptosis is an immune-related programmed cell death. However, the correlation between the expression of pyroptosis-related genes in BC and its prognosis remains unclear. Methods: In this study, we identified 38 pyroptosis-related genes that were differentially expressed between BC and normal tissues. The prognostic value of each pyroptosis-related gene was evaluated using patient data from The Cancer Genome Atlas (TCGA). The Cox regression method was performed to establish a prognostic model for 16-gene signature, classifying all BC patients in the TCGA database into a low-or high-risk group. Results: The survival rate of BC patients in the high-risk group was significantly lower than that in the low-risk group (P<0.01). Prognostic model is independent prognostic factor for BC patients compared to clinical features. Single sample gene set enrichment analysis (ssGSEA) showed a decrease for immune cells and immune function in the high-risk group. Conclusions: Pyroptosis-related genes influence the tumor immune microenvironment and can predict the prognosis of BC.


2019 ◽  
Author(s):  
Fang Bai ◽  
Hongliang Chen ◽  
Yipeng Fu ◽  
Peng Zhang ◽  
Mingdi Zhang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Gaia Griguolo ◽  
Maria Vittoria Dieci ◽  
Laia Paré ◽  
Federica Miglietta ◽  
Daniele Giulio Generali ◽  
...  

AbstractLittle is known regarding the interaction between immune microenvironment and tumor biology in hormone receptor (HR)+/HER2− breast cancer (BC). We here assess pretreatment gene-expression data from 66 HR+/HER2− early BCs from the LETLOB trial and show that non-luminal tumors (HER2-enriched, Basal-like) present higher tumor-infiltrating lymphocyte levels than luminal tumors. Moreover, significant differences in immune infiltrate composition, assessed by CIBERSORT, were observed: non-luminal tumors showed a more proinflammatory antitumor immune infiltrate composition than luminal ones.


The Breast ◽  
2012 ◽  
Vol 21 (2) ◽  
pp. 151 ◽  
Author(s):  
G.C. Wishart ◽  
C.D. Bajdik ◽  
E. Dicks ◽  
E. Provenzano ◽  
P.D.P. Pharoah

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12573-e12573
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Vijayashree Murthy ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
...  

e12573 Background: In breast cancer patients, it is well known that the elevation of neutrophil lymphocyte ratio (NLR) in the blood are reported to associate with poor prognosis based on the notion that neutrophils represent pro-cancer, and lymphocytes represent anti-cancer immune cells. Tumor immune microenvironment has been demonstrated to play critical roles in the outcome of breast cancer patients. However, there is scarce evidence on the clinical relevance of intratumoral NLR in breast cancer patients. In the current study, we hypothesized that intratumoral NLR high tumors are associated with worse survival particularly in TNBC that is known to have high immune cell infiltration. Methods: A total of 1904 breast cancer patients’ data from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) and analyzed. NLR was calculated by the gene expressions of CD66b (CEACAM8) and CD8 (CD8A). NLR high and low were divided by the median. Overall Survival (OS) and Disease-Free Survival were calculated utilizing Kaplan Meier method between intratumoral NLR high and low groups. xCell algorithm was used to analyze the infiltrated immune cells within the tumor immune microenvironment as we have previously published. Results: Intratumoral NLR high group was associated with worse OS in whole, ER-positive/HER2-negative, and triple negative (TN) subtypes, in agreement with the previous studies. TN subtype alone demonstrated worse DFS of NLR high group. Surprisingly, gene set enrichment analysis (GSEA) demonstrated no gene set enrichment to NLR high group, which implicates that there is no distinctive mechanism that associate with worse survival. Whereas, immune response-related gene sets significantly enriched to NLR low group in TN subtype. This enrichment was consistent in ER-positive/HER2-negative. Compared with ER-positive/HER2-negative subtype, anti-cancer immune cells such as CD4+ T cells, CD8+ T cells, M1 macrophage, and helper T helper type 1 cells were significantly infiltrated in TN patients (p < 0.001 for all genes), where M2 macrophages and neutrophils were less and regulatory T cells and T helper type 2 cells were more infiltrated in TN subtype. Furthermore, intratumoral NLR was significantly lower in TN compared with ER-positive/HER2-negative subtype (p < 0.001). These results suggest that intratumoral NLR low group is associated with better survival due to favorable tumor immune microenvironment in TN subtype rather than NLR high group has worse survival. Conclusions: Intratumoral NLR low tumor demonstrated more favorable OS and more favorable DFS in TN patients. Intratumoral NLR low breast cancer was associated with enhanced immune response and higher infiltration of anti-cancer immune cells were observed in TN subtype compared to ER-positive/HER2-negative which may contribute to the favorable outcome of in TN breast cancer.


Sign in / Sign up

Export Citation Format

Share Document