Can Intratumoral neutrophil lymphocyte ratio (NLR) be a prognostic biomarker in breast cancer patients?

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12573-e12573
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Vijayashree Murthy ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
...  

e12573 Background: In breast cancer patients, it is well known that the elevation of neutrophil lymphocyte ratio (NLR) in the blood are reported to associate with poor prognosis based on the notion that neutrophils represent pro-cancer, and lymphocytes represent anti-cancer immune cells. Tumor immune microenvironment has been demonstrated to play critical roles in the outcome of breast cancer patients. However, there is scarce evidence on the clinical relevance of intratumoral NLR in breast cancer patients. In the current study, we hypothesized that intratumoral NLR high tumors are associated with worse survival particularly in TNBC that is known to have high immune cell infiltration. Methods: A total of 1904 breast cancer patients’ data from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) and analyzed. NLR was calculated by the gene expressions of CD66b (CEACAM8) and CD8 (CD8A). NLR high and low were divided by the median. Overall Survival (OS) and Disease-Free Survival were calculated utilizing Kaplan Meier method between intratumoral NLR high and low groups. xCell algorithm was used to analyze the infiltrated immune cells within the tumor immune microenvironment as we have previously published. Results: Intratumoral NLR high group was associated with worse OS in whole, ER-positive/HER2-negative, and triple negative (TN) subtypes, in agreement with the previous studies. TN subtype alone demonstrated worse DFS of NLR high group. Surprisingly, gene set enrichment analysis (GSEA) demonstrated no gene set enrichment to NLR high group, which implicates that there is no distinctive mechanism that associate with worse survival. Whereas, immune response-related gene sets significantly enriched to NLR low group in TN subtype. This enrichment was consistent in ER-positive/HER2-negative. Compared with ER-positive/HER2-negative subtype, anti-cancer immune cells such as CD4+ T cells, CD8+ T cells, M1 macrophage, and helper T helper type 1 cells were significantly infiltrated in TN patients (p < 0.001 for all genes), where M2 macrophages and neutrophils were less and regulatory T cells and T helper type 2 cells were more infiltrated in TN subtype. Furthermore, intratumoral NLR was significantly lower in TN compared with ER-positive/HER2-negative subtype (p < 0.001). These results suggest that intratumoral NLR low group is associated with better survival due to favorable tumor immune microenvironment in TN subtype rather than NLR high group has worse survival. Conclusions: Intratumoral NLR low tumor demonstrated more favorable OS and more favorable DFS in TN patients. Intratumoral NLR low breast cancer was associated with enhanced immune response and higher infiltration of anti-cancer immune cells were observed in TN subtype compared to ER-positive/HER2-negative which may contribute to the favorable outcome of in TN breast cancer.

2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e12574-e12574
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
Manabu Futamura ◽  
...  

e12574 Background: MicroRNA-143(miR-143) is a well-known tumor suppressive microRNA in various malignancies, including breast cancer. Recently, the tumor immune microenvironment has been reported to associate with progression of breast cancers. However, the association with the tumor immune microenvironment and miR-143 in breast cancers remains ambiguous. Given these backgrounds, we hypothesized that high expression of miR-143 is associated with favorable effect to the tumor immune microenvironment which leads to better survival of ER positive breast cancer patients. Methods: Two major publicly available breast cancer cohorts were used for this study. A total of 753 patients from The Cancer Genome Atlas (TCGA) and total of 1283 patients from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used. Results: We defined the higher quartile of miR-143 expression levels as high and the remainder as low expression groups. There was no significant difference in patient clinicopathlogical features between two groups. Gene set enrichment analysis (GSEA) revealed that miR-143 high expression tumors enriched Helper T cell type 1 (Th1) related gene sets indicating the upregulation of anti-cancer immune cells. Also, the cell composition of anti-cancer immune cells, such as Th1 and Macrophage M1 were higher with miR-143 high tumors (p < 0.001 and p < 0.01 respectively) in whole group. On the contrary, pro-cancer immune cells such as Th2 and M1 were lower with miR-143 high tumors (p < 0.01 and p < 0.001 respectively) in whole group. Interestingly, among the subtypes, we found that ER positive subgroup followed this trend of high infiltration rate of anti-cancer immune cells and low infiltration rate of pro-cancer immune cells. Furthermore, only ER positive subgroup demonstrated the survival benefit with miR-143 high expression tumors. Conclusions: We demonstrated that high expression of miR-143 in ER breast cancer associate with favorable tumor immune microenvironment, upregulation of the anti-cancer immune cells and suppression of the pro-cancer immune cells, and associate with better survival of the breast cancer patients.


2020 ◽  
Vol 21 (9) ◽  
pp. 3213 ◽  
Author(s):  
Yoshihisa Tokumaru ◽  
Mariko Asaoka ◽  
Masanori Oshi ◽  
Eriko Katsuta ◽  
Li Yan ◽  
...  

microRNA-143 (miR-143) is a well-known tumor suppressive microRNA that exhibits anti-tumoral function by targeting KRAS signaling pathways in various malignancies. We hypothesized that miR-143 suppresses breast cancer progression by targeting KRAS and its effector molecules. We further hypothesized that high expression of miR-143 is associated with a favorable tumor immune microenvironment of estrogen receptor (ER)-positive breast cancer patients which result in improved survival. Two major publicly available breast cancer cohorts; The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) were used. The miR-143 high expression group was associated with increased infiltration of anti-cancer immune cells and decreased pro-cancer immune cells, as well as enrichment of the genes relating to T helper (Th1) cells resulting in improved overall survival (OS) in ER-positive breast cancer patients. To the best of our knowledge, this is the first study to demonstrate that high expression of miR-143 in cancer cells associates with a favorable tumor immune microenvironment, upregulation of anti-cancer immune cells, and suppression of the pro-cancer immune cells, associating with better survival of the breast cancer patients.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15185-e15185
Author(s):  
Hui-Ping Hsu ◽  
Chih-Yang Wang ◽  
Yao-Lung Kuo ◽  
Kuo-Ting Lee ◽  
Pai-Sheng Chen ◽  
...  

e15185 Background: Standard treatment for breast cancer patients includes surgery, chemotherapy, radiotherapy, target and endocrine therapy. Immune checkpoint inhibitors are newly developing medications. The theoretical basis of immunotherapy is the interaction between cancer cells and tumor-infiltrating immune cells. Cancer cells secrete cytokines and create a specific tumor immune microenvironment (TIME) to attract or modulate immune cells. Further, genetic mutations or copy-number variations in cancer cells contribute to immunosuppression. Liver kinase B1 (LKB1) protein ( STK11 gene) is the upstream of AMP activated Protein Kinase (AMPK)/mammalian Target of Rapamycin Complex 1 (mTORC1) signaling pathway. STK11/LKB1 is one of the possible pathways modulating TIME. Methods: Twenty-seven breast cancer patients who developed recurrence within postoperative 24 months and 22 control cancer patients without recurrence were enrolled from National Cheng Kung University Hospital in Taiwan. Targeted deep sequencing was performed to assess the mutations among individuals with breast cancer using a panel of 143 cancer-associated genes. Bioinformatics and public databases were used to predict the protein functions of the STK11 genes. Immunohistochemical staining of LKB1 protein was performed in clinical specimens. Immune-related molecules were analyzed by RNA sequencing and cytokine array after suppression of STK11. Results: Mutations of STK11 gene were detected in recurrent patients and associated with poor prognosis of patients. From immunohistochemical study, the patients with low LKB1 expression had a worse survival. We utilized CRISPER/Cas9 system to transfect sgRNA into three mouse cell lines, including M158, NF639 and PY8119. RNA sequencing was performed in parental and Stk11-sgRNA cells. Immune-related pathways were ranked in the top 10 networks. Increased mRNA expression of Csf3 (protein G-CSF), Cxcl5, and Ccl2 was detected. The results are confirmed by cytokine array. The expression of G-CSF (gene Csf3) and CXCL5 (gene Cxcl5) proteins was increased in Stk11-sgRNA cells. The results were similar with RNA sequencing. Conclusions: Our findings suggest that suppression of STK11/LKB1 is correlated with early recurrence of breast cancer patients and contributes to modulate TIME. The STK11/LKB1 and downstream AMPK/mTORC1 pathways may be potential targets for immunotherapy.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e12584-e12584
Author(s):  
Yoshihisa Tokumaru ◽  
Lan Le ◽  
Masanori Oshi ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
...  

e12584 Background: Recent studies have shown that infiltrating T-lymphocytes have been implicated in the promotion of breast cancer progression. Upon activation, these antigen-presenting cells then recruit adaptive immune cells. It has been proposed that polarization of CD4+ effector T-cells towards the immunosuppressive Th2 cells induce cytokine release and T-cell anergy, which lead to polarization of M2 tumor-associated macrophages (TAM’s), providing a protumorigenic microenvironment. We hypothesized that there is a correlation between high levels of Th2 cells and aggressive features of breast cancer and unfavorable tumor immune environment. Methods: Clinicopathological data and overall survival information was obtained on 1069 breast cancer patients from The Cancer Genome Atlas (TCGA) database. We defined Th2 high and low levels with the median cutoff. Results: Analysis of cell composition of the immune cells within tumor immune microenvironment demonstrated that Th2 high tumors did not consistently associated with unfavorable tumor immune microenvironment. Pro-cancer immune cells, such as macrophage M2 cells were increased with Th2 high tumors whereas, regulatory T cells were decreased with Th2 high tumors (p < 0.01 and p < 0.001 respectively). On the contrary, infiltration of anti-cancer cells, such as macrophage M1 was increased whereas CD8 T cells were decreased with Th2 high tumors (p < 0.05 and p < 0.001 respectively). Th2 was not shown to have correlation with IL-4, IL-6, IL-10 and IL-13, all of which has been reported to associate with Th2 cells. Th2 levels were associated with advanced grades. Also, correlation analysis demonstrated that there was a strong correlation between Th2 levels and Ki-67. These results were further validated with gene set enrichment analysis (GSEA). GSEA revealed that in Th2 high tumors enriched the gene sets associated with cell proliferation and cell cycle. Conclusions: High expression of immunosuppressive Th2 cells was associated with highly proliferative features of breast cancer, but not with unfavorable tumor immune microenvironment.


2021 ◽  
Author(s):  
Qiang Wang ◽  
Xuxu Liu ◽  
Pengfei Wang ◽  
Dankun Luo ◽  
Wenqi Gao ◽  
...  

Abstract Background:Breast cancer (BC) is one of the most common tumors in women. Recent years, immune checkpoint inhibitors (ICIs) have brought good news to BC patients. Although significant achievements have been made through treatment with ICIs, some people who experience serious immune-related adverse events (IrAEs) are still insensitive to this approach. The response to ICI treatment depends on the type of tumor microenvironment (TME). Methods:WGCNA (weighted gene co-expression network analysis), ESTIMATE algorithm, LASSO regression analysis, survival analysis, functional enrichment analysis are conducted to analyze the BC data in the TCGA database. Immunohistochemistry was used to verify the expression of CD52 in BC.Results:WGCNA and ESTIMATE algorithm found that the CD52 is closely related to the immune microenvironment. CD52 highly expressed in various breast cancer subtypes, and patients with high expression of CD52 have longer survival time. Compared with the low-CD52 group, the high-CD52 group had more immune cell infiltration. TIMER database verification results showed that CD8+ T cells, activated memory CD4 T cells, memory B cells, γδ T cells, and Tregs were positively correlated with CD52 expression, while M2 macrophages were negatively correlated. CD52 can change the trend of TIC (CD8+ T) and tumor-associated macrophage (TAM) infiltration with respect to the survival time of breast cancer patients. Based on the expression of CD52, we explored the relationship between CD52 and the adaptive immune response (AIR). CD52 is a marker of AIR stratification in breast cancer patients. We constructed a CD52-related adaptive immune response gene signature (CD52rAIRGsig) which is an independent prognostic factor for breast cancer and related to genome instability and the immune cells infiltration in the TME. CD52 and CD52rAIRGsig were associated with PD-1 signaling and immune checkpoint inhibitor markers, which proves that patients with high CD52 expression and low risk of CD52rAIRGsig are more suitable for ICI treatment. We then screened chemotherapeutics for personalized medicine based on CD52rAIRGsig. Conclusion:Therefore, we have discovered a new marker to guide the treatment and prognosis of breast cancer patients with ICIs. This provides a combined treatment strategy including different combinations of ICIs combined with chemotherapeutic drugs to treat breast cancer.


2020 ◽  
Author(s):  
Jia Zhu ◽  
Jie Wu ◽  
Changgan Mo ◽  
Siyuan Liang ◽  
Tao Lian ◽  
...  

Abstract Background: Some breast cancer patients are prone to recurrence and metastasis. Increasing evidence suggests that the breast tissue contains a diverse population of bacteria, which may be modulating the risk of breast cancer development or progression. However, the extent of microbial contribution to the tumor immune microenvironment in breast cancer remains unknown. Here, we explored the potential influence of the tumor microbiota on the local immune microenvironment and breast cancer prognosis.Methods: Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition and identified bacteria that were differentially abundant between breast cancer patients with recurrence or metastasis (R/M) and those without recurrence or metastasis (NRM). We performed total RNA sequencing in tumor tissues from patients in both groups to determine differentially expressed genes (DEGs). The landscape of tumor-infiltrating immune cells (TIICs) subtypes in the tumor immune microenvironment was analyzed using CIBERSORT, based on the gene expression profiling of tumor tissues. Differences in the tumor microbiomes were then correlated with DEGs and differences in TIICs, in order to determine how microbial abundance may contribute to cancer progression.Results: Microbial alpha-diversity was higher in NRM patients than in R/M patients. The composition and functions of the tumor microbiome communities differed between the two groups. We found higher alpha-diversity, higher abundance of Ruminococcus, Butyrivibrio, and Deinococcus, and lower abundance of Microbacterium could serve as a predictor of better prognosis in breast cancer patients. We also found that 16 genes, including CD36, showed differential expression in NRM compared to R/M, and differences in the composition of TIICs were observed between the two groups. In addition, we observed that the different tumor microbiome profiles were associated with DEGs and differences in TIICs between the two groups.Conclusions: The tumor microbiome may affect the prognosis of breast cancer patients by influencing the tumor immune microenvironment. Thus, the tumor microbiome may be a useful prognostic indicator.


Sign in / Sign up

Export Citation Format

Share Document