Influence of sowing dates and seeding rates on the grain yield of spring triticale in the steppe zone of the Republic of Buryatia

Author(s):  
Namzhil Badmaevich Mardvaev
2020 ◽  
Vol 15 (2) ◽  
pp. 53-58
Author(s):  
Irina Fadeeva ◽  
Marsel Tagirov ◽  
Ilyas Gazizov ◽  
Fail' Kurmakaev

In 2018-2019 in the Republic of Tatarstan the studies were carried out to study the effect of sowing dates and seeding rates on productuvuty of new varieties of winter wheat to identify the optimal elements of cultivation technology. The experiment scheme provided for the study of the following options: variety (factor A) - Darina, Universiada, Sultan; sowing time (factor B) - September 1 ... 2 (first, optimal), September 15 ... 17 (second); seeding rate (factor C) - 5.0; 5.5; 6.0; 6.5 million viable seeds per hectare. The predecessor is pure steam. Plot area 25 m2. The formation of the grain yield was mainly influenced by the sowing period (28.6%), the choice of the variety (21.2%) and the interaction of the three factors studied (15.8%). Universiada variety formed a yield of 4.91 t/ha during the first sowing period with a pure fallow and a seeding rate of 5.5 million pcs/ha. Sowing after September 15 resulted in a 33.78% decrease in the productivity of this variety. Darina variety formed the highest stand density among all the studied genotypes, both at the first (551.5 pieces/m2) and at the second (476.0 pieces/ m2) sowing dates. The highest grain yield of this variety was noted with the optimal (first) sowing period for pure fallow and the seeding rate of 6.0 million pcs/ha - 4.70 t/ha. A shift in sowing to a later date reduced its yield by 26.48%. Sultan variety formed the highest grain yield when sowing on September 1 ... 2 on a clean fallow with a seeding rate of 6.0 million pcs/ha. With a delay in sowing, like other varieties, the value of this indicator decreased by 24.65%. The analysis of correlations showed the dependence of the yield at the optimal sowing time in a medium degree on the grain size (r = 0.66), with a late one - on the number of productive stems for harvesting (r = 0.56). Key words: winter wheat (Triticum aestivum L.), variety, productivity, yield, grain weight, correlation


2001 ◽  
Vol 49 (3) ◽  
pp. 293-297
Author(s):  
S. O. Bakare ◽  
M. G. M. Kolo ◽  
J. A. Oladiran

There was a significant interaction effect between the variety and the sowing date for the number of productive tillers, indicating that the response to sowing date varied with the variety. A significant reduction in the number of productive tillers became evident when sowing was delayed till 26 June in the straggling variety as compared to sowing dates in May. Lower numbers of productive tillers were also recorded when the sowing of the erect variety was further delayed till 10 July. The grain yield data showed that it is not advisable to sow the straggling variety later than 12 June, while sowing may continue till about 26 June for the erect variety in the study area.


2020 ◽  
pp. 13-26
Author(s):  
Ya. M. Golovanov ◽  
L. M. Abramova

The synthaxonomy and ecology of communities with predominance of Hordeum jubatum L., included in the «black list» of the Republic of Bashkortostan (Abramova, Golovanov, 2016a), the preliminary «black list» of the Orenburg Region (Abramova et al., 2017) and the «Black book of flora of Middle Russia» (Vinogradova et al., 2010), are discussed in the article, which continues a series of publications on the classification of communities with alien species in the South Urals (Abramova, 2011, 2016; Abramova, Golovanov, 2016b). H. jubatum was first found in the South Urals in 1984 as an adventive plant occurring along streets in the town of Beloretsk, as well as in gardens where it was grown as an ornamental plant. During the 1980s, it was met also at some railway stations and in several rural localities. Its active distribution throughout the South Urals started in XXI century (Muldashev et al., 2017). Currently, H. jubatum, most naturalized in the native salted habitats of the steppe zone, is often found in disturbed habitats in all natural zones within the region. The short vegetating period and resistance to drought allowed it to be naturalized also in dry steppes, where it increasingly acts as the main weed on broken pastures. The aim of the work, conducted during 2011–2017, was further finding the centers of H. jubatum invasion in 3 regions adjacent to the South Urals — the Republic of Bashkortostan and the Chelyabinsk and Orenburg Regions (Fig. 1). In the main sites of H. jubatum invasion 71 relevès were performed on 10–100 m² sample plots with the information of location, date, the plot size, the total cover, average and maximum height of herb layer. Classification was carried out following the Braun-Blanquet method (Braun-Blanquet, 1964) with using the Kopecký–Hejný approach (Kopecký, Hejný, 1974). The community ecology was assessed by weighted average values according to the optimal ecological scales by E. Landolt with usfge of the software of IBIS (Zverev, 2007). PCA-ordination method with usage CANOCO 4.5 software package was applied to identify patterns of environmental differentiation of invasive communities. The current wide distribution area of H. jubatum and its naturalization in synanthropic, meadow and saline communities in the South Urals, as well as its occurrence within mountain-forest belt, forest-steppe and steppe zones both in the Cis- and Trans-Urals, indicates species wide ecological amplitude, high adaptive capability and invasive potential. Its vast thickets are known in the steppe zone, both in disturbed steppes around settlements and along the banks of water bodies. The invasion sites are smaller in the northern regions and mountain forest belt, where these are located in settlements or along communication lines. Therefore, the steppe zone is more favorable for invasive populations, and their distribution will continue from the south to the north. Communities with predominance of H. jubatum, described earlier (Abramova, Golovanov, 2016b) in the Cis-Urals as two derivative communities (associations Hordeum jubatum [Scorzonero–Juncetea gerardii], Hordeum jubatum [Artemisietea]) and Polygono avicularis–Hordeetum jubati, were met in other regions of the South Urals. Also a new derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati], occuring in the northern part of the Cis-Urals and Trans-Urals, was established. In new habitats this species forms three types of communities: ass. Polygono avicularis–Hordeetum jubati (Fig. 2) the most widespread in anthropogenic habitats throughout the South Urals; derivative community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii] (Fig. 5) which replaces saline meadows mainly in the steppe zone of the region; derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (Fig. 4) which y replaces low-herb meadows in the forest-steppe zone and mountain-forest belt. PCA ordination (Fig. 6) shows that moisture (H) and soil richness-salinization (S) factors are in priority in differentiation of communities with predominance H. jubatum. The first axis is mainly related to the salinization and soil richness. The community pattern along the second axis is associated with wetting factor. The cenoses of the derivative community Hordeum jubatum–Poa pratensis [Cynosurion cristati] (less salted substrates in drier conditions in the northern part of the forest-steppe zone and the mountain forest belt) are grouped in the upper part of the ordination diagram, while communities of ass. Polygono avicularis–Hordeetum jubati (drier conditions in settlements, the steppe zone) in its low left part. Thus, axis 1 also reflects the intensity of trampling. Another group is formed by cenoses of the derivate community Hordeum jubatum–Juncus gerardii [Scorzonero–Juncetalia gerardii], (salt substrates with a high level of moisturization, on not very damaged water body banks). All communities with H. jubatum are well differentiated in the space of the main ordination axes that indirectly confirms the correctness of our syntaxonomic decision. Undoubted is further expansion of H. jubatum with its entering both anthropogenic and natural plant communities within the South Urals that suggests a constant monitoring in centers of species invasion.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 927
Author(s):  
Jamshad Hussain ◽  
Tasneem Khaliq ◽  
Muhammad Habib ur Rahman ◽  
Asmat Ullah ◽  
Ishfaq Ahmed ◽  
...  

Rising temperature from climate change is the most threatening factor worldwide for crop production. Sustainable wheat production is a challenge due to climate change and variability, which is ultimately a serious threat to food security in Pakistan. A series of field experiments were conducted during seasons 2013–2014 and 2014–2015 in the semi-arid (Faisalabad) and arid (Layyah) regions of Punjab-Pakistan. Three spring wheat genotypes were evaluated under eleven sowing dates from 16 October to 16 March, with an interval of 14–16 days in the two regions. Data for the model calibration and evaluation were collected from field experiments following the standard procedures and protocols. The grain yield under future climate scenarios was simulated by using a well-calibrated CERES-wheat model included in DSSAT v4.7. Future (2051–2100) and baseline (1980–2015) climatic data were simulated using 29 global circulation models (GCMs) under representative concentration pathway (RCP) 8.5. These GCMs were distributed among five quadrants of climatic conditions (Hot/Wet, Hot/Dry, Cool/Dry, Cool/Wet, and Middle) by a stretched distribution approach based on temperature and rainfall change. A maximum of ten GCMs predicted the chances of Middle climatic conditions during the second half of the century (2051–2100). The average temperature during the wheat season in a semi-arid region and arid region would increase by 3.52 °C and 3.84 °C, respectively, under Middle climatic conditions using the RCP 8.5 scenario during the second half-century. The simulated grain yield was reduced by 23.5% in the semi-arid region and 35.45% in the arid region under Middle climatic conditions (scenario). Mean seasonal temperature (MST) of sowing dates ranged from 16 to 27.3 °C, while the mean temperature from the heading to maturity (MTHM) stage was varying between 12.9 to 30.4 °C. Coefficients of determination (R2) between wheat morphology parameters and temperature were highly significant, with a range of 0.84–0.96. Impacts of temperature on wheat sown on 15 March were found to be as severe as to exterminate the crop before heading. The spikes and spikelets were not formed under a mean seasonal temperature higher than 25.5 °C. In a nutshell, elevated temperature (3–4 °C) till the end-century can reduce grain yield by about 30% in semi-arid and arid regions of Pakistan. These findings are crucial for growers and especially for policymakers to decide on sustainable wheat production for food security in the region.


Author(s):  
M Yu Gambotova ◽  
M A Bazgiev ◽  
Z M Tsitskiev ◽  
L Yu Kostoeva ◽  
F A Biteeva

2021 ◽  
Vol 17 (2) ◽  
pp. 84-92
Author(s):  
A. A. Makarov ◽  
N. I. Mamsirov

In order to realize the maximum potential parameters of winter wheat productivity, it is necessary, first of all, to use high-yielding varieties with optimal quality indicators of grain, as well as progressive agricultural technologies aimed at obtaining a stable crop yield. Winter wheat places high demands on its previous crops. Insufficient amount of productive moisture in the soil or its extremely low reserves affects the yield, and consequently, the quality of winter wheat grain according to unpaired predecessors. Moreover, dry autumn during the sowing period leads to its delay, which is the reason for obtaining uneven and weak seedlings. In this regard, studies have been carried out to study and assess the influence of predecessors on the agrocenosis, yield and grain quality of promising varieties of Adel, Grom, Tanya winter wheat. According to the experimental scheme, peas, corn for silage and sunflower have been identified as the preceding crops for winter wheat. Agrotechnology in experience is generally accepted for the foothill zone of the Republic of Adygea. The results of the research made it possible to identify the most optimal of the considered predecessors in the cultivation of winter wheat, capable of providing stable yields with high quality grain. Certain differences in the photosynthetic activity of the studied winter wheat varieties for different predecessors have been noted. It has been found that the leaf area of winter wheat varieties is in the range of 30,0–33,5 thousand m2/ha. The highest dry matter content in the range of 4,9–5,0 t/ha is observed in the Grom variety, and the predecessor is peas. The largest number of grains in an ear for three previous crops is 40–43 pcs / ear for peas. It also had a fairly significant effect on the weight of 1000 grains and the grain yield of winter wheat. For example, the weight of 1000 grains of the most productive Thunder variety varied from 40,1 to 41,6 gm, depending on the previous crop. According to the results of the experiments, the highest grain yield of winter wheat within the range of 5,3 t/ha has been noted for the Grom variety when cultivated for peas. The smallest grain yield in the range of 3,8–3,9 t/ha is typical for all studied varieties of winter wheat, namely, according to the cultivated predecessor – sunflower.


2017 ◽  
Vol 14 (2) ◽  
pp. 155-160
Author(s):  
MAR Sharif ◽  
MZ Haque ◽  
MHK Howlader ◽  
MJ Hossain

The experiment was conducted at the field laboratory of the Patuakhali Science and Technology University, Patuakhali, Bangladesh during the period from November, 2011 to March 2012 under the tidal Floodplain region to find out optimum sowing time for the selected three cultivars (BARI Sharisha-15, BINA Sharisha-5 and BARI Sharisha-9). There were four sowing dates viz. 30 November, 15 December, 30 December and 15 January. Significant variations due to different sowing dates were observed in plant height, total dry matter, leaf area index, number of siliqua plant-1, seeds silique-1, 1000-grain weight, grain yield and HI. Results showed that the highest grain yield (1.73 t ha-1) was obtained from the first sowing (30 November) with BINA Sharisha-5 and it was significantly different from the yields of all other combination.J. Bangladesh Agril. Univ. 14(2): 155-160, December 2016


2017 ◽  
Vol 14 (2) ◽  
pp. 77-85
Author(s):  
Md Sohel Mahmud ◽  
Md Jafar Ullah ◽  
Md Abdullahil Baque ◽  
Lutfun Naher ◽  
Sayed Mohammad Mohsin

The experiment was conducted to determine the effect of irrigations and sowing dates on growth and yield performance of wheat in the experimental field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during the period of November 18, 2012 to March 30, 2013. The experiment was comprised of two factors, viz. factor A: two irrigations namely irrigation (I) and no irrigation i.e. control (I0), and factor B: three sowing dates such as S1: 1st sowing on 18 November, S2: 2nd sowing on 03 December and S3: 3rd sowing on 18 December. The experiment was laid out in a split plot design with three replications. Irrigation was assigned in the main plot, while sowing time was in the sub-plots. Data on grain yield and different yield contributing characters were taken after harvest. Results indicated that the highest grain yield was obtained with I (2.915 t ha-1) and S1 (2.983 t ha-1). The interaction of irrigation (I) and sowing on 18 November (S1) showed the maximum yield (3.387t ha-1), spike length (17.08 cm), 1000 grain weight (43.4 g), spikelets spike-1 (20.03) and grain spike-1 (65.58) of wheat.The Agriculturists 2016; 14(2) 77-85


2020 ◽  
Vol 50 (4) ◽  
pp. 66-71
Author(s):  
B. M. Ludu ◽  
B. K. Kan-ool

The paper presents the results of the research into the condition, number and concentration of beef cattle of Hereford breed, adapted to the natural and climatic conditions of the East Siberian region. The methodological basis of the study was formed by the methods of systematization, logical and comparative statistical analysis. The research information was based on the official materials of the Ministry of Agriculture and Food of the Republic of Tuva on animal husbandry. Out of the total number of livestock in the region (180 748 heads), Herefords amount to 2869 heads. A comparative analysis of livestock in farms of different forms of ownership and different natural and climatic zones was carried out. The largest population of Herefords (48.94%) is concentrated in the central agricultural and livestock zone with forest-steppe and steppe subzones (by the number of animals Piy-Khem kozhuun ranks first, 19.1%). In the southern zone of dry steppes, there are 27.43% of Herefords (by the number of livestock in the Republic, Tes-Khem kozhuun ranks second, 14.7%). In the western mountain-steppe zone there are 23.63% of Herefords, the largest number is in Barun-Khemchik (7.4%) and in Bai-Taiginsky (7%) kozhuun. Specialized beef cattle have not been brought to the high-mountain Mongun-Taiginsky kozhuun of the western zone or to the eastern high-mountain taiga zone. According to the results of the analysis, taking into account the category of farms, 56.4% of Herefords are kept in peasant farm enterprises, 19.7% – in agricultural production cooperatives, 29.7% – in other agricultural enterprises. All farms practise year-round grazing. Differences in the number of Hereford cattle by districts depend on the capacities of farms and climatic breeding zones. The monitoring which was carried out will allow to determine the prospects for raising purebred cattle of a specialized type, taking into account the terrain and zone of the breeding work in the conditions of year-round grazing in the Republic of Tuva.


Sign in / Sign up

Export Citation Format

Share Document