Use of ASTER DEM data for Morphometric Analysis of Megech Dirma-Watersheds, Blue Nile Basin, Ethiopia: Implications for Soil and Water Conservation

2021 ◽  
Vol 5 (1) ◽  
pp. 27-40
Author(s):  
Worku Habtu ◽  
Jayappa K. S

Quantitative morphometric analysis was carried out for Megech-Dirma, sub-basin of the Blue Nile, by estimating (1) linear, (2) aerial, and (3) relief aspects. An endeavor has been made to measure the Megech-Dirma watershed’s morphometric characteristics to implement conservation methods for soil and water properly. ASTER DEM has been used as input data for extracting morphometric parameters. Strahler’s classification scheme was used to classify the extracted drainage network in ArcGIS extension ArcMap 10.4. The watershed covers a total surface area of 1309.56 km2. The shape of the watersheds as calculated from elongation, circularity, and form factors reveals the elongated shape and the watersheds parade dendritic pattern. The sub-watersheds include third-order for Megech and sixth-order streams. Lower stream orders, in particular first-order streams, dominate the sub-watersheds. The length of overland flow has a higher value (1.06) for Megech indicates low relief, whereas the values of length of overland flow, which are relatively low (0.20) for Dirma, indicate high relief. The drainage density of the study watershed was morphometrically analyzed and obtained 0.47 km/km2 for the Megech sub-basin, which indicates the basin is highly permeable and result in better underground water storage capacity and 2.46 for the Dirma sub-basin indicating very coarse and coarse channel, respectively. The ruggedness number for Megech and Dirma sub-basins was 0.56 and 0.07, respectively, indicating moderate and long, rugged topography, which could be susceptible to flash flood and soil erosion. The dissection index values for Megech 0.40 and 0.36 for Dirma show river sub-basins are moderately dissected. The ruggedness number is 0.56 for Megech implies moderate soil erosion probability, whereas the high infiltration number (14.29) for Dirma river shows the high runoff potential in the sub-basin. The findings of this study include drainage morphometry data that can be used to better understand watershed characteristics and serve as a framework for better planning, management, and decision-making to ensure the long-term use of watershed resources of water and soil.

2021 ◽  
Vol 58 (03) ◽  
pp. 286-299
Author(s):  
Mahesh Chand Singh ◽  
Rohit Singh ◽  
Abrar Yousuf ◽  
Vishnu Prasad

The present study examined 35 morphometric parameters related to stream/drainage network, catchment geometry, and relief aspects for hydrological characterization of the Thana Dam catchment using geospatial tools and techniques. The dam catchment was delineated using the high-resolution Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) Digital Elevation Model (DEM) data in ArcGIS 10.4.1 software using the Arc Hydro tools. The catchment is comprised of 4th order stream, obtained using a stream threshold value of 100 m length. The lower values of elongation ratio (0.61), circularity ratio (0.22), and form factor (0.29) indicated higher soil erosion potential, mainly due to their inverse relationship with land erodibility. Moreover, the higher values of stream frequency (15.7), drainage density (>5.0), drainage texture (7.48 km-1), and mean bifurcation ratio (4.08-6.33) indicated higher runoff potential, which would intensify the soil erosion, mainly due to their direct relationship with erodibility. Bifurcation ratio, elongation ratio, circulatory ratio, form factor, altogether indicated an elongated shape of the catchment with a fine drainage texture. The higher values of bifurcation ratio and texture ratio of the catchment also indicated severe overland flow (low infiltration rate) with a limited scope for groundwater recharge in the area, which in turn might significantly encourage the soil erosion. Overall, it was concluded that the catchment has a huge runoff potential resulting in high soil erosion due to its fine texture, impermeable subsurface material, steep slope, low infiltration rate, limited vegetation, longer duration of overland flow, and higher surface runoff. The morphometric analysis was found to be suitable for identifying catchment shape and the factors affecting hydrologic conditions and erodibility of the catchment. Thus, Geo-informatics based morphometric analysis of a reservoir catchment can be useful to study the erosion potential in relation to hydrologic (rainfall-runoff relationship) and other related land characteristics (e.g., relief, slope, infiltration rate, etc.).


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
S. V. Shejale ◽  
◽  
S. B. Nandgude ◽  
S. S. Salunkhe ◽  
M. A. Phadtare ◽  
...  

Present research work was carried out on soil erosion and crop productivity loss in Palghar and Thane districts. The study also describes tolerable soil loss and relationship between top-soil loss and yield loss. The estimated average annual soil loss was 40.45 t ha-1yr-1 before adoption of the soil and water conservation measures (by USLE method) and estimated average tolerable soil loss was 9.36 t ha-1 yr-1, for Palghar district. Similarly, for Thane district the estimated average annual soil loss and tolerable soil loss were found to be 35.89 t ha-1 yr-1 and 9.61 t ha-1 yr-1, respectively for Thane district. The estimated average conservation practice factor (P) factors were obtained as 0.32 for Palghar district and 0.30 for Thane district to bring the soil loss below the tolerable limit. After adoption of soil and water conservation measures, the estimated soil loss were 9.02 t ha-1 yr-1 and 9.38 t ha-1 yr-1 for Palghar and Thane districts, respectively.


2014 ◽  
Vol 977 ◽  
pp. 290-294 ◽  
Author(s):  
Zhi Qiang Yu ◽  
Qiang Gao ◽  
Wen Feng Ding

In recent years , with the acceleration of the process of China's modernization cities , soil erosion and lead to many more serious environmental problems . This paper describes the harm to the social construction of ecological civilization city soil and water loss,analyzed the causes of soil erosion,and finally illustrates the importance of soil and water conservation of the city and puts forward some suggestions for the construction of soil and water conservation.


2018 ◽  
Vol 10 (2) ◽  
pp. 249-263 ◽  
Author(s):  
Dagnenet Sultan ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Mitsuru Tsubo ◽  
...  

2014 ◽  
Vol 522-524 ◽  
pp. 211-222
Author(s):  
Jun Jie Li ◽  
Ding Qiang Li ◽  
Mu Ning Zhuo

Nuclear tracer technology is quantitative and it has a high priority, which provides a unique method for understanding the mechanism of urban soil and water loss.137Cs +210Pbexcombination tracer was applied to study the characterization and evaluation of soil Erosion in Shenzhen. The results indicate that the following: 1)Disturbances from urbanization has greatly changed surface soil in Shenzhen.137Cs background inventory in Shenzhen range at 99 Bq/m2-653 Bq/m2. 2)210Pbexbackground inventory increase with altitude rise, which is attributed to the movement of water vapor. 3)Soil erosion in Shenzhen has a wide distribution area and exacerbated by severe human disturbance. Land development and steep orchard are key factors that influence urban soil and water loss. 4)Shenzhen should strictly carry out projects for soil and water conservation, such as returning steep slopes into forests and grasslands, and other ecological management reforms.


Author(s):  
Xiaohui Huang ◽  
Qian Lu ◽  
Fei Yang

Purpose This paper aims to build a theoretical model of the impact of farmers’ adoption behavior of soil and water conservation measures on the agricultural output to analyze the impact of farmers’ adoption behavior of soil and water conservation measures on agricultural output. Design/methodology/approach Based on the field survey data of 808 farmers households in three provinces (regions) of the Loess Plateau, this paper using the endogenous switching regression model to analyze the effect of farmers’ adoption behavior of soil and water conservation measures on agricultural output. Findings Soil erosion has a significant negative impact on agricultural output, and soil erosion has a significant positive impact on farmers’ adoption of soil and water conservation measures. Farmers adopt soil and water conservation measures such as engineering measures, biological measures and tillage measures to cope with soil erosion, which can increase agricultural output. Based on the counterfactual hypothesis, if farmers who adopt soil and water conservation measures do not adopt the corresponding soil and water conservation measures, their average output per ha output will decrease by 2.01%. Then, if farmers who do not adopt soil and water conservation measures adopt the corresponding soil and water conservation measures, their average output per ha output will increase by 12.12%. Government support and cultivated land area have a significant positive impact on farmers’ adoption behavior of soil and water conservation measures. Research limitations/implications The research limitation is the lack of panel data. Practical implications Soil erosion has a significant negative impact on agricultural output, and soil erosion has a significant positive impact on farmers’ adoption of soil and water conservation measures. Farmers adopt soil and water conservation measures such as engineering measures, biological measures and tillage measures to cope with soil erosion, which can increase agricultural output. Social implications The conclusion provides a reliable empirical basis for the government to formulate and implement relevant policies. Originality/value The contributions of this paper are as follows: the adoption behavior of soil and water conservation measures and agricultural output are included into the same analytical framework for empirical analysis, revealing the influencing factors of farmers’ adoption behavior of soil and water conservation measures and their output effects, enriching existing research. Using endogenous switching regression model and introducing instrumental variables to overcome the endogenous problem between the adoption behavior of soil and water conservation measures and agricultural output, and to analyze the influencing factors of farmers’ adoption behavior of soil and water conservation measures and its impact on agricultural output. Using the counter-factual idea to ensure that the two matched individuals have the same or similar attributes, to evaluate the average treatment effect of the behavior of soil and water conservation measures, to estimate the real impact of adaptation measures on agricultural output as accurately as possible and to avoid misleading policy recommendations.


2020 ◽  
Vol 12 (3) ◽  
pp. 934 ◽  
Author(s):  
Mengfan Cai ◽  
Chunjiang An ◽  
Christophe Guy ◽  
Chen Lu

Soil and water conservation practices (SWCPs) are widely used to control soil and water loss. Quantifying the effect of SWCPs and climate change on soil and water erosion is important for regional environmental management. In this study, the Soil Conservation Service Curve Number (SCS-CN) and the Modified Universal Soil Loss Equation (MUSLE) were employed to investigate the patterns of surface runoff and soil erosion with different SWCPs in the hilly region on the Loess Plateau of China. The impact of climate change under RCP4.5 and RCP8.5 emission scenarios was considered from 2020 to 2050. Surface runoff grew with the increased rainfall and rainfall erosivity, while soil erosion presented large variations between years due to uneven distribution of rainfall and rainfall erosivity under two scenarios. Different SWCPs significantly reduced surface soil and water loss. Compared with bare slopes, the reduction rates were 15–40% for surface runoff and 35–67% for soil erosion under RCP4.5 and RCP8.5 emission scenarios, respectively. The combination of shrub and horizontal terracing was recommended due to its low water cost for sediment control among seven SWCPs.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 20 ◽  
Author(s):  
Yaping Wang ◽  
Wenzhao Liu ◽  
Gang Li ◽  
Weiming Yan ◽  
Guangyao Gao

The tableland-gully region is one of the main topographic-ecological units in the Chinese Loess Plateau (CLP), and the soil in this region suffers from serious water erosion. In recent years, much work has been conducted to control soil erosion in this area. This paper summarized the development of soil and water conservation researches in the CLP from the bibliometric perspective based on the Science Citation Index (SCI) and Chinese National Knowledge Infrastructure (CNKI) databases. The quantity of SCI literatures has increased rapidly since 2007, with an average annual growth rate of 21.4%, and the quantity of CNKI literatures in the last decade accounted for 62% of the past 30 years. The development trends showed that early SCI research was related to loess geology in the context of ecological remediation, while the CNKI literature focused on agricultural production under comprehensive management. Over time, the research themes of the two databases gradually became unified, i.e., the management of sloping farmland and the improvement of agricultural productivity. Subsequently, the themes gradually extended to the disposition of comprehensive control measures for soil erosion and the environmental effect of agro-fruit ecosystems. The highly cited papers mainly focused on soil reservoir reconstruction, soil erosion factors, and environmental effects of vegetation restoration. Two aspects need further study, including (i) the effect of soil erosion control under different ecological remediation patterns; and, (ii) the ecosystem maintenance mechanism and regulation approaches that are based on the sustainable utilization of soil and water resources in the tableland-gully region of the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document