scholarly journals FLOATING GASTRO-RETENTIVE DOSAGE FORMS – A NOVEL APPROACH FOR TARGETED AND CONTROLLED DRUG DELIVERY

2012 ◽  
Vol 2 (1) ◽  
pp. 23-30
Author(s):  
Aleksandar Aleksovsk ◽  

Controlled (modified) release dosage forms are one of the key concepts in drug delivery, leading to enhanced drug bioavailability and increased patient’s compliance. However conventional modified release dosage forms encounter one big disadvantage- lack of site-specific drug delivery. Scientists developed different kinds of targeted oral controlled release forms. One of these are gastro-retentive systems- systems which can remain in the stomach region for prolonged period of time and thereby release the active compound in controlled fashion. Floating dosage forms are the most promising approach of all gastro-retentive systems. They are capable to float over the gastric content in longer time intervals. This article makes a review on floating dosage forms in general, different approaches for achieving floatation, advantages and disadvantages of this drug delivery concept. For better understanding the topic,an emphasis is made also on the anatomical and physiological features of the stomach and on the factors affecting gastric retention.

Author(s):  
Christe Mary M ◽  
Sasikumar Swamiappan

Presently, various approaches have been exploited in the prolongation of gastric residence time which includes floating drug delivery system (FDDS), swelling and expanding systems, bio-adhesive systems, modified shape systems and high density systems. Among various methods, floating drug delivery system is considered to be a predominant method. Gastric emptying of dosage forms is an extremely varying process and ability to extend and control the emptying time is a valuable resource for the dosage forms. This FDDS is having the ability to provides a solution for this purpose. The FDDS is a bulk density system lower than the gastric fluid, so that the rest will float on the stomach contents for a prolonged period of time and allowing the drug to release slowly at a desired rate from the system and intensifies the bio-availability of the drug having narrow absorption window. The main intension of writing this review on floating drug delivery system is to study the mechanism of flotation to acheive the gastric retention and to discuss briefly about the background of FDDS, advantages and disadvantages, application of FDDS and factors affecting the gastric retension time.


2017 ◽  
Vol 6 (7) ◽  
pp. 5426 ◽  
Author(s):  
Hiren J. Patel ◽  
Vaishnavi P. Parikh

The pharmaceutical industry has faced several marked challenges in order to bring new chemical entities (NCEs) into the market over the past few decades. Various novel drug delivery approaches have been used as a part of life cycle management from which Osmotic drug delivery systems look the most promising one. After discussing the history of osmotic pump development, this article looks at the principles, advantages and disadvantages of osmotic drug delivery systems. Then, the basic components of osmotic pump and factors affecting the design of oral osmotic drug delivery systems are discussed in detail. In the later part of the manuscript, various types of osmotic pumps available in the market and evaluation methods for osmotic drug delivery systems are discussed in detail.


Author(s):  
Amol Giri ◽  
Aijaz Sheikh ◽  
P R Tathe ◽  
G R Sitaphale ◽  
K R Biyani

In this present review this new approach of solid lipid Nanoparticles (SLNs) is discussed in terms of their aims, advantages, and disadvantages, methods of preparation, characterization and special features. In the state of developments in the research and development of new drug delivery systems have been made in Last decade by resolving various disorders, such as Low Drug Bioavailability and unpredictable gastric emptying era. Most of the active pharmaceutical ingredients are under poor bioavailability and also their solubility. By using the nanotechnology to overcome this problems of novel drug delivery system. The main advantage of nanotechnology i.e. solid lipid Nanoparticles increases the bioavailability and elimination biological half-life of the drugs. Solid lipid Nanoparticles are spherical lipid particles ranging in size from 1 to 1000 nm and are dispersed in water or in aqueous surfactant solution.


2018 ◽  
Vol 1 (1) ◽  
pp. 11-18
Author(s):  
Rajesh Asija

The purpose of writing this review on floating microspheres was to compile the recent literature with special focus on various gastro retentive approaches that have recently become leading methodologies in the field of orally controlled drug delivery to overcome physiological adversities such as short gastric residence times and unpredictable gastric emptying times. Floating microspheres enhances drug bioavailability; reduce drug excretion and controlled drug delivery and better patient compliance.


2020 ◽  
Vol 11 (03) ◽  
pp. 389-394
Author(s):  
Ashish Suttee ◽  
Vijay Mishra ◽  
Pallavi Nayak ◽  
Manvendra Singh ◽  
Pavani Sriram

Niosomes are novel vesicular drug delivery systems, where the solution is surrounded by non-ionic surfactant vesicles. The niosomes offer different benefits over the traditional drug delivery system. Niosomes are structurally similar to liposomes, as they also consist of a bilayer. In the case of niosomes, the bilayer consists of non-ionic surface-active agents instead of phospholipids, as seen in liposomes. Niosomes are much more stable during the process of formulation and storage, as compared to liposomes. Niosomes may resolve the issues of insolubility, volatility, poor bioavailability, and rapid drug degradation. It has been discovered in recent years that, these vesicles can enhance drug bioavailability and can act as a new strategy to deliver many conventional therapeutic agents, such as, protein drugs, and gene materials. It is also easy to prepare and scale up this novel delivery system with low production costs. The delivery of drugs via niosomal formulations may be relevant to several pharmacological agents for their activity against different diseases. The present review provides an overview about the advantages and disadvantages, fabrication techniques, types, characterization technique, and different applications of niosomes.


2021 ◽  
Vol 10 (1) ◽  
pp. 57-66
Author(s):  
E. O. Bakhrushina ◽  
M. N. Anurova ◽  
N. B. Demina ◽  
I. V. Lapik ◽  
A. R. Turaeva ◽  
...  

Introduction. Effective delivery of ophthalmic drugs is challenging. The eye has a number of protective systems and physiological barriers, which is why ophthalmic dosage forms have a low bioavailability, usually not exceeding 5 %. Topical drug administration is relatively easy to use and is most commonly prescribed by physicians for the treatment of ophthalmic diseases, especially the anterior segment of the eye. However, when using traditional delivery systems, a number of problems arise: patients' violation of the drug administration technique, and, as a consequence, a decrease in treatment compliance, restriction of drug delivery to the target eye tissues due to low epithelial permeability and rapid clearance after drug administration. Maintaining a constant therapeutic drug level is another challenge that traditional delivery systems often fail to cope with.Text. The article discusses the types of ophthalmic delivery systems. Traditional ones are represented by such dosage forms as eye drops, ointments, gels. Modern ophthalmic dosage forms are represented by: eye films, contact lenses and eye implants. The characteristics, advantages and disadvantages of each type of delivery systems and their promising directions of development, as well as modern developments in this area are given.Conclusion. Currently, most of the scientific research on the development of ophthalmic delivery systems is devoted to obtaining dosage forms capable of maintaining a constant concentration of the drug in the target tissue, providing the transport of active ingredients to them. This is achieved by using modern advances in nanotechnology and polymer chemistry. Receive liquid and soft dosage forms with micro-, nano- and micro-nano-carriers. Polymeric delivery systems such as films, lenses and implants are being actively developed and studied. The development of modern technological approaches opens up new possibilities for the treatment of a wide range of ophthalmic diseases by reducing the side effects often induced by the intrinsic toxicity of molecules, reducing the frequency of the administered dose and maintaining the pharmacological profile of the drug. Thus, the use of modern ophthalmic delivery systems can significantly limit the use of invasive treatments.


2021 ◽  
Vol 11 (2) ◽  
pp. 44-49
Author(s):  
ANJALI CHOURASIYA ◽  
◽  
NARENDRA GEHALOT ◽  
SURESH CHANDRA MAHAJAN ◽  
◽  
...  

NDDS is advanced drug delivery system which improves drug potency, control drug release to give a sustained therapeutic effect, provide greater safety, finally it is to target a drug specifically to a desired tissue. Novel drug delivery system have been developed to overcome the limitation of conventional drug delivery systems, such as of gastric retention by decreasing fluctuations in the concentration of the drug in blood,resulting in the reduction in unwanted toxicity and poor efficiency. As compared to traditional dosage forms bilayer tablets are more efficient for sequential release of two drugs that can be different or identical. Bilayer tablet is also capable of separating two incompatible substances and also for sustained release. Gastro retentive drug delivery system retains the period of dosage forms in the stomach or upper gastro intes-tinal tract ,as to improve bioavailability and the therapeutic efficacy of the drugs. Mainly the bilayer drug delivery system is suitable for drugs whose therapethic windows are narrow in the gastrointestinal tract (GIT) and also they have low elimination half life: 3-4 h. The purpose of this review is to disclose the challenges faced during the formulation of bilayer tablets. Finally, the whole article is firmly analyzed in a concluding paragraph. KEYWORDS: Conventional drug delivery systems, Bilayer tablet, Gastro retentive, Bioavailability


2020 ◽  
Vol 26 (6) ◽  
pp. 701-709
Author(s):  
Phuong H.L. Tran ◽  
Thao T.D. Tran

Improving drug bioavailability in the pharmaceutical field is a challenge that has attracted substantial interest worldwide. The controlled release of a drug can be achieved with a variety of strategies and novel materials in the field. In addition to the vast development of innovative materials for improving therapeutic effects and reducing side effects, the exploration of remarkable existing materials could encourage the discovery of diverse approaches for adapted drug delivery systems. Recently, superdisintegrants have been proposed for drug delivery systems as alternative approaches to maximize the efficiency of therapy. Although superdisintegrants are well known and used in solid dosage forms, studies on strategies for the development of drug delivery systems using superdisintegrants are lacking. Therefore, this study reviews the use of superdisintegrants in controlled drug release dosage formulations. This overview of superdisintegrants covers developed strategies, types (including synthetic and natural materials), dosage forms and techniques and will help to improve drug delivery systems.


2018 ◽  
Vol 10 (6) ◽  
pp. 65 ◽  
Author(s):  
Mirmeera Girish Niharika ◽  
Kannan Krishnamoorthy ◽  
Madhukar Akkala

The principal objective behind the writing of this article on the floating drug delivery system (FDDS) was to systematize the recent literature with the core process of floatation in acquiring gastric retention. The different strategies used in the development of FDDS by constructing the effervescent and noneffervescent type of floating tablets basis of which is buoyancy mechanism. FDDS is a method to deliver the drugs that are active locally with a narrow absorption window in the upper gastrointestinal tract, unstable in the lower intestinal environment, and possess low solubility with higher pH values. The novel methodologies in FDDS include approaches to design a single unit and multiple-unit floating systems, the physiological and formulation variability affecting gastric retention along with the use of recently invented and developed polymers. This review also focuses on various in vitro techniques and in vivo studies in view of performance and application of floating systems. Floating dosage forms can be delivered in conventional forms like tablets, capsules with the addition of suitable ingredients along with the gas generating agent. This review also throws light on different techniques used in developing floating dosage forms along with current and novel advancements.


Author(s):  
Mehta Abhinav ◽  
Jain Neha ◽  
Grobler Anne ◽  
Vandana Bharti

Novel drug delivery systems (NDDS) are one of the most strategies which enable to overcome the problems related to drug bioavailability. It is the rate and extent to which a drug becomes available to the target tissue after its administration. Most of the new drugs used today have poor bioavailability and are required to be administered at higher doses because only a small fraction of the administered dose is absorbed in the systemic circulation and able to reach the target site. This results in the wastage of major amount of drug and lead to adverse effects. Pharmaceutical technology mainly focuses on enhancing the solubility and permeability of drugs with lower bioavailability. Nanotechnology is the concept used in NDDS that enables a weight reduction of drug particles accompanied by an increase in stability and improved functionality. Various approaches such as nanosuspensions, liposomes, niosomes, nanoemulsions, cubosomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), cyclodextrins, phytosome etc., are used for the enhancement of bioavailability. The present review focuses on the different approaches used for bioavailability enhancement along with their advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document