scholarly journals SOLAR RADIATION STUDY IN BENGHAZI CITY AND MODELING, EXPERIMENTAL VERIFICATION OF A PV PANEL

2009 ◽  
Vol 32 (3) ◽  
pp. 299-304
Author(s):  
Adel A. Abosuina ◽  
Mahmoud Shaker
2021 ◽  
Vol 13 (11) ◽  
pp. 6115
Author(s):  
Moon Keun Kim ◽  
Khalid Osman Abdulkadir ◽  
Jiying Liu ◽  
Joon-Ho Choi ◽  
Huiqing Wen

This study explores the combination of photovoltaic (PV) panels with a reflector mounted on a building to improve electricity generation. Globally, PV panels have been widely used as a renewable energy technology. In order to obtain more solar irradiance and improve electricity output, this study presents an advanced strategy of a reflector combining PV panels mounted on a building in Calgary, Canada. Based on an experimental database of solar irradiances, the simulation presents an optimal shape designed and tilt angles of the reflector and consequently improves solar radiation gain and electricity outputs. Polished aluminum is selected as the reflector material, and the shape and angle are designed to minimize the interruption of direct solar radiation. The numerical approach demonstrates the improvement in performance using a PV panel tilted at 30°, 45°, 60°, and 75° and a reflector, tilted at 15.5° or allowed to be tilted flexibly. A reflector tilted at 15.5° can improve solar radiation gains, of the panel, by nearly 5.5–9.2% at lower tilt angles and 14.1–21.1% at higher tilt angles. Furthermore, the flexibly adjusted reflector can improve solar radiation gains on the PV panel, by nearly 12–15.6% at lower tilt angles and 20–26.5% at higher tilt angles. A reflector tilted at 15.5° improves the panel’s output electricity on average by 4–8% with the PV panel tilted at 30° and 45° respectively and 12–19 % with the PV panel tilted at 60° and 75°, annually. Moreover, a reflector that can be flexibly tilted improves electricity output on average by 9–12% with the PV panel tilted at 30° and 45° and 17–23% with the PV panel tilted at 60° and 75°. Therefore, the utilization of a reflector improves the performance of the PV panel while incurring a relatively low cost.


2020 ◽  
Vol 13 (3) ◽  
pp. 267-285
Author(s):  
Laura Casula ◽  
Guglielmo D’Amico ◽  
Giovanni Masala ◽  
Filippo Petroni

AbstractThis article deals with the production of energy through photovoltaic (PV) panels. The efficiency and quantity of energy produced by a PV panel depend on both deterministic factors, mainly related to the technical characteristics of the panels, and stochastic factors, essentially the amount of incident solar radiation and some climatic variables that modify the efficiency of solar panels such as temperature and wind speed. The main objective of this work is to estimate the energy production of a PV system with fixed technical characteristics through the modeling of the stochastic factors listed above. Besides, we estimate the economic profitability of the plant, net of taxation or subsidiary payment policies, considered taking into account the hourly spot price curve of electricity and its correlation with solar radiation, via vector autoregressive models. Our investigation ends with a Monte Carlo simulation of the models introduced. We also propose the pricing of some quanto options that allow hedging both the price risk and the volumetric risk.


2011 ◽  
Vol 71-78 ◽  
pp. 4374-4381 ◽  
Author(s):  
Kuo Tsang Huang ◽  
Wen Sheng Ou

The energy generation efficiency of Building Intergraded Photovoltaic Systems (BIPV) system relies much on the panel’s surface solar radiation received. In the projection of annual power generation of photovoltaic panels, local global solar radiation plays a pivotal role for reliable estimation process. The purpose of this paper is to develop an hourly typical solar radiation year (TSRY) as fundamental meteorological database for utilizing the estimation process. The TSRY should be interpretable to local long-term climate variations, thus, ten years' hourly meteorological data were gathered to formulate a typical year by means of modified Sandia method herein. A total of four cities' hourly typical years from northern to southern Taiwan were established in this paper. Orientation and inclination effect of the PV panel were also discussed in terms of daily averaged global solar radiation that cumulate from TSRY.


2020 ◽  
Vol 9 (1) ◽  
pp. 148 ◽  
Author(s):  
Moses E. Emetere

The harsh solar irradiance measurement in recent times has further supported the existence of global climate change. It is not clear if this challenge is located in other parts of the world. Over the years, it has been observed that PV panel have a lower lifespan with a failing performance. Due to the peculiarity of this challenge in the research, the bio-filter was synthesized to shield the PV panel from damage via the aforementioned harsh solar radiation. The bio-filter was tested using the monocrystalline and polycrystalline panel. The results proved that the bio-filters are good stabilizing medium.


Author(s):  
Ahmad Fudholi ◽  
Mariyam Fazleena Musthafa ◽  
Abrar Ridwan ◽  
Rado Yendra ◽  
Ari Pani Desvina ◽  
...  

<span lang="EN-US">Photovoltaic thermal (PVT) collectors convert solar radiation directly to both electrical and thermal energies. A PVT collector basiccaly combines the functions of a flat plate solar collector and those of a PV panel. This review presents thermodinamics fundamentals, descriptions, and previous works conducted on energy and exergy analysis of air based PVT collector. Studies in 2010 to 2018 of the energy and exergy analysis of air based PVT collectors are summarized. The energy and exergy efficiency of air based PVT collector ranges from 31% to 94% and 8.7% to 18%, respectively. In addition, flat plate solar collector is presented. Studies conducted on air based PVT collectors are reviewed.</span>


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Preeda Chantawong

The author reports an experimental investigation of the thermal performance of a multipurpose photovoltanic (PV) solar wall with phase change material (PVSW-PCM). The PVSW-PCM configuration was made of double layers. The external layer consists of a 12 Wp photovoltaic panel attached to a 15 cm thick PCM tank integrating water pipes. The internal wall is an ordinary clear glass pane. There is an 8 cm air gap between the two layers. The PVSW-PCM was integrated into the southern side of a small house of 4.05 m3 volume built by autoclaved aerated concrete block walls 0.07 m thick. On top of the external layer, three glass blocks (3 × 0.2 × 0.2 cm2) are installed to ensure indoor illumination. The absorbed solar radiation by the PV panel and PCM heats the water in the pipes and the air in the gap. The hot water produced is stored in a 10 liters tank located near the roof. At the inner lower part (room side) and the external upper part (ambient) of the gap, a small DC fan (12 V, 0.48 A) box was installed. The fans were connected to the PV panel directly to enhance indoor ventilation. The investigation considered both natural (fans OFF) and PV assisted ventilation. Another similar house without the PVSW-PCM referred to as glass wall (GW) was built and used as a reference for comparison. The experimental results revealed that the indoor temperature of the PVSW-PCM house was considerably lower than that of the GW house. Moreover, the PVSW-PCM could produce hot water temperature of 55–62 °C and induce a ventilation rate proportional to the intensity of solar radiation. Indoor illumination was sufficient for general house use. Therefore, the PVSW-PCM offers a new alternative for architects and engineers to reduce electric energy use for producing hot water and ventilation and save electrical energy consumption of air conditioner, as the indoor temperature is lower than that of the conventional house.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Maryam M. Alqurashi ◽  
Reem M. Altuwirqi ◽  
Entesar A. Ganash

With the gradual reduction of fossil fuels, it is essential to find alternative renewable sources of energy. It is important to take advantage of substitutes that are less expensive and more efficient in energy production. Photovoltaic concentrators (CPVs) are effective methods through which solar energy can be maximized resulting in more conversion into electrical power. V-trough concentrators are the simplest types of low-CPV in terms of design as it is limited to the use of two plane mirrors with a flat photovoltaic (PV) plate. A consequence of concentrating more solar radiation on a PV panel is an increase in its temperature that may decrease its efficiency. In this work, the thermal profile of the PV plate in a V-trough system will be determined when this system is placed in different geographical locations in Saudi Arabia. The simulation is conducted using COMSOL Multiphysics software with a ray optics package integrated with a heat transfer routine. The 21st of June was chosen to conduct the simulation as it coincides with the summer solstice. The employment of wind as a cooling method for V-troughs was investigated in this work. It was found that with the increase in wind speed, the PV panel temperature dropped significantly below its optimum operating temperature. However, due to the mirrors’ attachment to the PV panel, the temperature distribution on the surface of the panel was nonuniform. The temperature gradient on the PV surface was reduced with the increase of wind speed but not significantly. Reducing the size of the mirrors resulted in a partial coverage of solar radiation on the PV surface which helped in reducing the temperature gradient but did not eliminate it. This work can assist in testing numerous cooling models to optimize the use of V-troughs and increase its efficiency especially in locations having high ambient temperatures.


Author(s):  
Abhishek Kumar Tripathi ◽  
Mangalpady Aruna ◽  
Ch. S.N. Murthy

Solar Photovoltaic (PV) energy conversion has gained much attention nowadays. The output power of PV panel depends on the condition under which the panel is working, such as solar radiation, ambient temperature, dust, wind speed and humidity. The amount of falling sunlight on the panel surface (i.e., solar radiation) directly affects its output power. In order to maximize the amount of falling sunlight on the panel surface, a solar tracking PV panel system is introduced. This paper describes the design, development and fabrication of the solar PV panel tracking system. The designed solar tracking system is able to track the position of the sun throughout the day, which allows more sunlight falling on the panel surface. The experimental results show that there was an enhancement of up to a 64.72% in the output power of the PV panel with reference to the fixed orientation PV panel. Further, this study also demonstrates that the full load torque of the tracking system would be much higher than the obtained torque, which is required to track the position of the sun. This propounds, that the proposed tracking system can also be used for a higher capacity PV power generation system.


Author(s):  
Yasushi Kohata ◽  
◽  
Koichiro Yamauchi ◽  
Masahito Kurihara ◽  

Photo Voltaic (PV) devices have a Maximum Power Point (MPP) at which they generate maximum power. Because the MPP depends on solar radiation and PV panel temperature, it is not constant over time. A Maximum Power Point Tracker (MPPT) is widely used to continuously obtain maximum power, but if the solar radiation changes rapidly, the efficiency of most classic MPPT (e.g., the Perturbation and Observation (P&O) method) reduces. MPPT controllers using neural network respond quickly to rapidly changing solar radiation but must usually undergo prelearning using PV-specific data, so we propose MPPT that handles both online learning of PV properties and feed-forward control of the DC-DC converter with a neural network. Both simulation results and actual device performance using our proposed MPPT showed great efficiency even under rapidly changing solar radiation. Our proposal is implemented using a small microcomputer using low computational power.


Sign in / Sign up

Export Citation Format

Share Document