scholarly journals Biological and Chemical Control of Powdery Mildew (Sphaerotheca pannosa (Wallr.) var. persicae) in Apricot

Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1442-1442 ◽  
Author(s):  
R. Félix-Gastélum ◽  
G. Herrera-Rodríguez ◽  
C. Martínez-Valenzuela ◽  
I. E. Maldonado-Mendoza ◽  
F. R. Quiroz-Figueroa ◽  
...  

Rose (Rosa spp.) is the most important ornamental plant cultivated in greenhouse and open fields in Mexico but its quality has been limited by powdery mildew (PM). High incidence and disease damage is common during winter in Sinaloa, Mexico (temperature range 18 to 25°C and prolonged episodes of relative humidity ≥90%). The fungus attacks leaves and flowers and grows abundantly on the pedicels, sepals, and receptacles, especially when the flower bud is unopened (2). Field advisors in Mexico have referred to Sphaerotheca pannosa (Wallr. ex Fr.) Lév. as a causal agent of the disease. However, there has not been solid scientific evidence to support this statement. Morphometric and molecular analysis were conducted to elucidate the identity of the fungal isolates collected from 2012 through 2013 in northern Sinaloa. PM specimens included eight different rose varieties. Conidiophores and conidia were observed under a compound microscope. The mycelium had a mean diameter of 4.7 to 6.0 μm; conidiophores (Euoidium type) 2 to 5 celled, occasionally 6 celled emerged from the superficial mycelium; conidiophores were unbranched with conidia produced in chains from the apex. The average length of the conidiophores was 54.9 to 98.0 μm; the foot cell of the conidiophores was straight and was 24.9 to 53.6 μm long with a diameter from 8.2 to 9.8 μm across its medium part. Conidia originated from unswollen conidiogenous cells, with fibrosin bodies, formed in long chains, and were cylindrical to ovoid, 25.8 to 30.4 μm long and 13.9 to 17.3 μm wide. The outline of the conidial chains was crenate. Conidia exhibited a slight constriction at one end. The germ tubes emerged from a shoulder of the conidia. The outer wall of partially collapsed conidia showed longitudinal and transversal wrinkling and slight constrictions at the ends; the terminal end of the conidia was concentrically ridged. For molecular characterization, the ITS region of the specimens was amplified with primers ITS1F and ITS4. Phylogenetic analysis was performed with MEGA 6.0 (bootstrap = 1,000) using Kimura 2 parameter (K2P) substitution model. The resulting phylogeny grouped our specimens (GenBank KM001665 to 69) within a clade of Podosphaera pannosa (Wall.: Fr.) de Bary (formerly known as Sphaerotheca pannosa) sequences (e.g., AB525938; bootstrap (1,000) = 98). Phylogenetic and morphometric data are in agreement with descriptions of the anamorphic P. pannosa (1,3). Morphological studies indicate that P. macularis (previously known as S. humuli) and P. pannosa are not indistinctly different (2). Phylogenetic analysis showed relationship to P. pannosa, but not to P. macularis. Typical symptoms caused by P. pannosa were observed. Morphological studies (4) reported the anamorph of P. pannosa on Rosa spp. in central Mexico. To date, no report exists on the molecular identification of P. pannosa associated to roses in northern Sinaloa, Mexico. Future research directions should focus on finding the teleomorph of the fungus to support its identity, and to explore disease management tools such as effective fungicides and developing resistant rose cultivars. References: (1) U. Braun et al. Page 13 in: The Powdery Mildews: A Comprehensive Treatise. APS Press, St. Paul, MN, 2002. (2) R. K. Horst. Compendium of Rose Diseases. APS Press, St. Paul, MN, 1983. (3) L. Leus et al. J. Phytopathol. 154:23, 2006. (4) Yañez-Morales et al. Some new reports and new species of powdery mildew from Mexico. Schlechtendalia 19:46, 2009.


2017 ◽  
Vol 38 (SI 2 - 6th Conf EFPP 2002) ◽  
pp. 583-587
Author(s):  
M. Vaverka ◽  
S. Vaverka

In the course of 1993–2001 extensive field trials were carried out to evaluate the resistance (susceptibility) level of 34 gooseberry cultivars to the American gooseberry powdery mildew Sphaerotheca mors uvae Schwein. Cultivars originated from the Czech Republic and from other European countries. Each tested cultivar had 7 trees (5–10 years old). Beside the resistance (susceptibility) evaluation, biological efficacy of 9 fungicides using EPPO methods has been checked at the same number of cultivars and at the same number of gooseberry trees. Highly significant differences of resistance or susceptibility were observed among gooseberry varieties. Analogical results (differences in biological activity of fungicides) have been attained in the course of chemical treatment. 18 cultivars has been classified as low resistant, 12 cultivars as moderate resistant and 4 cultivars as high resistant. None of the tested fungicides proved perfect biological efficacy (100% healthy berries). 4 of them proved high biological effect (more than 90% healthy berries), 3 proved low biological activity (less than 75% healthy berries) and 2 proved moderate biological activity (75–90% healthy berries).


1991 ◽  
Vol 20 (1) ◽  
pp. 16 ◽  
Author(s):  
LM Ransom ◽  
RG O'brien ◽  
RJ Glass

Author(s):  
I. J. Holb

Apple powdery mildew (Podoshphaera leucorticha) occurs wherever apples are grown. One of the most important fungal disease of apple which causing severe econimic loss on susceptible apple cultivars. This review focuses on the control of apple powdery mildew. The first part of the study provides details of novel aspects of non-chemical control approaches, including agronomic measures, mechanical and biological control options as well as essential features of apple cultivar resistance. After this, developments in chemical control options are described sperately for integrated and organic apple orchards.


HortScience ◽  
1997 ◽  
Vol 32 (2) ◽  
pp. 262-266 ◽  
Author(s):  
Ken K. Ng ◽  
Leslie MacDonald ◽  
Zamir K. Punja

The efficacy of Tilletiopsis pallescens Gokhale, a naturally occurring ballistosporeforming yeast isolated from mildew-infected leaves, was evaluated as a biological control agent against rose powdery mildew [Sphaerotheca pannosa (Wallr.:Fr.) Lév. var. rosae Woronichin]. Two trials were conducted on potted rose (Rosa sp.) plants (1-year-old cv. Cardinal Pink) under commercial greenhouse-growing conditions during the summer (June to September) when mildew was most severe. Mildew-infected plants were subjected to one of four treatments: a T. pallescens spore suspension applied three times (3–4 d apart), distilled water (applied three times), one application of T. pallescens spore suspension, or one application of culture filtrate without spores. Two weeks after treatment began, mildew development was evaluated by enumerating conidial density on sampled leaflets. Sporulation was significantly reduced (by 97%–98%) on plants treated with three applications of T. pallescens spore suspension, compared to a 47%–57% reduction on plants treated with three applications of distilled water. There was no significant difference in conidial density between plants treated with one application of T. pallescens spore suspension and plants treated with one application of its culture filtrate, with a 78%–94% reduction in conidia, which was significantly higher than for the water treatment. The mode(s) of action of T. pallescens appears to be eradicant and associated with enzymes or metabolites produced in the culture filtrate. The results from this study demonstrate the potential for biological control of rose powdery mildew under commercial growing conditions in British Columbia.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 541A-541
Author(s):  
Steven E. Newman ◽  
Michael J. Roll ◽  
Ronald J. Harkrader

Quaternary benzophenanthridine alkaloids (QBAs) isolated from plants in the family Papaveraceae are effective for the control of some fungal diseases. Extracts from Macleaya cordata, a species rich in QBAs, were formulated at 150 mg·L–1 QBA for spray application to greenhouse roses infected with Sphaerotheca pannosa var. rosae (powdery mildew). The QBA formulation was applied at 10-day intervals. For comparison, copper sulfate pentahydrate, piperalin, and fenarimol also were applied to mildew-infected plants within the same greenhouse at their respective labeled rates. One day after treatment, visible symptoms of mildew infection were reduced 60% by QBA, whereas fenarimol, copper sulfate pentahydrate, and piperalin reduced the symptoms of infection 50%, 75%, and 85%, respectively. Subsequent studies demonstrated that a tank mix of QBA and piperalin provided enhanced control of powdery mildew on rose. Results from this study indicate that QBAs have the potential to be developed as a biorational fungicide for greenhouse use with both fungicidal and fungistatic activity.


Sign in / Sign up

Export Citation Format

Share Document