scholarly journals Ameliorative Effect of Cerium Oxide Nanoparticles against Cadmium Nephrotoxicity in Male Albino Rats

2021 ◽  
Vol 28 (2) ◽  
pp. 62-75
Author(s):  
Mostafa Bashandy ◽  
Hanan Saeed ◽  
Walaa Ahmed ◽  
Marwa Ibrahim ◽  
Olfat Shehata
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lamiaa Wasef ◽  
Atef M. K. Nassar ◽  
Yasser S. El-Sayed ◽  
Dalia Samak ◽  
Ahmed Noreldin ◽  
...  

AbstractFipronil (FIP) is a phenylpyrazole insecticide that is commonly used in agricultural and veterinary fields for controlling a wide range of insects, but it is a strong environmentally toxic substance. Exposure to FIP has been reported to increase the hepatic fat accumulation through altered lipid metabolism, which ultimately can contribute to nonalcoholic fatty liver disease (NAFLD) development. The present study aimed to examine the function of cerium oxide nanoparticles (CeNPs) in protecting against hepatotoxicity and lipogenesis induced by FIP. Twenty-eight male albino rats were classified into four groups: FIP (5 mg/kg/day per os), CTR, CeNPs (35 mg/kg/day p.o.), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg/day p.o.) for 28 consecutive days. Serum lipid profiles, hepatic antioxidant parameters and pathology, and mRNA expression of adipocytokines were assessed. The results revealed that FIP increased cholesterol, height-density lipoprotein, triacylglyceride, low-density lipoprotein (LDL-c), and very-low-density lipoprotein (VLDL-c) concentrations. It also increased nitric oxide (NO) and malondialdehyde (MDA) hepatic levels and reduced glutathione peroxidase (GPx) and superoxide dismutase (SOD) enzyme activities. Additionally, FIP up-regulated the fatty acid-binding protein (FABP), acetyl Co-A carboxylase (ACC1), and peroxisome proliferator-activated receptor-alpha (PPAR-α). Immunohistochemically, a strong proliferation of cell nuclear antigen (PCNA), ionized calcium-binding adapter molecule 1 (Iba-1), cyclooxygenase-2 (COX-2) reactions in the endothelial cells of the hepatic sinusoids, and increased expression of caspase3 were observed following FIP intoxication. FIP also caused histological changes in hepatic tissue. The CeNPs counteracted the hepatotoxic effect of FIP exposure. So, this study recorded an ameliorative effect of CeNPs against FIP-induced hepatotoxicity.


2017 ◽  
Vol 69 (7) ◽  
pp. 435-441 ◽  
Author(s):  
Shereen S. El Shaer ◽  
Taher A. Salaheldin ◽  
Nashwa M. Saied ◽  
Sally M. Abdelazim

2020 ◽  
Vol 393 (12) ◽  
pp. 2411-2425
Author(s):  
Amira Mohamed Abdelhamid ◽  
Shireen Sami Mahmoud ◽  
Aziza E. Abdelrahman ◽  
Nelly Mohamed Said ◽  
Mostafa Toam ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Norhan Elshony ◽  
Atef M. K. Nassar ◽  
Yasser S. El-Sayed ◽  
Dalia Samak ◽  
Ahmed Noreldin ◽  
...  

Fipronil (FIP) is an N-phenylpyrazole insecticide that is used extensively in public health and agriculture against a wide range of pests. Exposure to FIP is linked to negative health outcomes in humans and animals including promoting neuronal cell injury, which results in apoptosis through the production of reactive oxygen species (ROS). Therefore, the purpose of the current study was to investigate the neuroprotective effects of cerium oxide nanoparticles (CeNPs) on neuronal dysfunction induced by FIP in albino rats. Male rats were randomly classified into four groups: control, FIP (5 mg/kg bwt), CeNPs (35 mg/kg bwt), and FIP + CeNPs (5 (FIP) + 35 (CeNPs) mg/kg bwt), which were treated orally once daily for 28 consecutive days. Brain antioxidant parameters, histopathology, and mRNA expression of genes related to brain function were evaluated. The results revealed oxidative damage to brain tissues in FIP-treated rats indicated by the elevated levels of malondialdehyde (MDA) and nitric oxide (NO) levels and reduced activities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GPx). On the other hand, the FIP’s group that was treated with CeNPs showed decrease in MDA and NO levels and increase in SOD and GPx enzymes activity. Besides, FIP-treated rats showed decreased butyrylcholinesterase (BuChE) activity in comparison to the FIP + CeNPs group. Moreover, FIP caused up-regulation of the expression of neuron-specific enolase (NSE), caspase-3, and glial fibrillary acidic protein (GFAP) but down-regulation of B-cell lymphoma-2 (BCL-2) expression. But the FIP + CeNPs group significantly down-regulated the GFAP, NSE, and caspase-3 and up-regulated the gene expression of BCL-2. Additionally, the FIP-treated group of rats had clear degenerative lesions in brain tissue that was reversed to nearly normal cerebral architecture by the FIP + CeNPs treatment. Immunohistochemical examination of brain tissues of rats-treated with FIP showed abundant ionized calcium-binding adaptor molecule 1 (Iba-1) microglia and caspase-3 and apoptotic cells with nearly negative calbindin and synaptophysin reaction, which were countered by FIP + CeNPs treatment that revealed a critical decrease in caspase-3, Iba-1 reaction with a strong calbindin positive reaction in most of the Purkinje cells and strong synaptophysin reaction in the cerebrum and cerebellum tissues. Based on reported results herein, CeNPs treatment might counteract the neurotoxic effect of FIP pesticide via an antioxidant-mediated mechanism.


2020 ◽  
Vol 16 (5) ◽  
pp. 816-828
Author(s):  
Gurdeep Rattu ◽  
Nishtha Khansili ◽  
Prayaga M. Krishna

Background: Cerium oxide nanoparticles (nanoceria) are efficient free-radical scavengers due to their dual valence state and thus exhibit optical and catalytic properties. Therefore, the main purpose of this work was to understand the peroxidase mimic activity of polymer-stabilized nanoceria for enzyme-less H2O2 sensing by fluorescence spectrometer. Objective: This research revealed the development of fluorescence hydrogen peroxide nanosensor based on the peroxidase-like activity of polyacrylic acid stabilized nanoceria (PAA-CeO2 Nps). Methods: PAA-CeO2 Nps were synthesized by simple cross-linking reaction at a low temperature and characterized by XRD, SEM, Zeta potential, TGA, FT-IR and UV-VIS spectroscopic analysis. H2O2 sensing was performed by a fluorescence spectrometer. Results:: The synthesized polymer nanocomposite was characterized by XRD, SEM, TGA, FT-IR and UV-VIS spectroscopic analysis. The XRD diffraction patterns confirmed the polycrystalline nature and SEM micrograph showed nanoparticles having hexagonal symmetry and crystallite size of 32 nm. The broad peak of Ce–O bond appeared at 508 cm-1. UV-VIS measurements revealed a welldefined absorbance peak around 315 nm and an optical band-gap of 3.17 eV. As synthesized PAACeO2 Nps effectively catalysed the decomposition of hydrogen peroxide (H2O2) into hydroxyl radicals. Then terephthalic acid was oxidized by hydroxyl radical to form a highly fluorescent product. Under optimized conditions, the linear range for determination of hydrogen peroxide was 0.01 - 0.2 mM with a limit of detection (LOD) of 1.2 μM. Conclusion: The proposed method is ideally suited for the sensing of H2O2 at a low cost and this detection system enabled the sensing of analytes (sugars), which can enzymatically generate hydrogen peroxide.


2018 ◽  
Vol 6 (2) ◽  
pp. 111-115 ◽  
Author(s):  
Azadeh Montazeri ◽  
Zohreh Zal ◽  
Arash Ghasemi ◽  
Hooman Yazdannejat ◽  
Hossein Asgarian-Omran ◽  
...  

Life Sciences ◽  
2021 ◽  
pp. 119500
Author(s):  
Fereshteh Asgharzadeh ◽  
Alireza Hashemzadeh ◽  
Farzad Rahmani ◽  
Atieh Yaghoubi ◽  
Seyedeh Elnaz Nazari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document