Pilot scale application of UV-C/H 2 O 2 for removal of chlorinated ethenes from contaminated groundwater

2018 ◽  
Vol 67 (4) ◽  
pp. 414-422 ◽  
Author(s):  
Pavel Krystynik ◽  
Pavel Masin ◽  
Petr Kluson
2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


2021 ◽  
Vol 223 ◽  
pp. 136-145
Author(s):  
Zong-Han Yang ◽  
Ya-Lei Chen ◽  
Francis Verpoort ◽  
Cheng-Di Dong ◽  
Chiu-Wen Chen ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1200 ◽  
Author(s):  
Linlong Yu ◽  
Sobhan Iranmanesh ◽  
Ian Keir ◽  
Gopal Achari

Sulfolane is an emerging contaminant in the groundwater and soil nearby gas plants, which has attracted much attention from many researchers and regulatory agencies in the past ten years. In this paper, a field pilot-scale ultraviolet (UV)/hydrogen peroxide (H2O2) system was investigated for treating sulfolane contaminated groundwater. Different groundwater, as well as different operational parameters such as influent sulfolane concentration, H2O2 dosage, and water flow rates, were studied. The results showed that a pilot-scale UV/H2O2 system can successfully treat sulfolane contaminated groundwater in the field, although the presence of iron and other groundwater limited the process efficiency. The lowest electrical energy per order of reduction for treating sulfolane in groundwater by using the pilot-scale UV/H2O2 system was 1.4 kWh m−3 order−1. The investigated sulfolane initial concentrations and the water flow rates did not impact the sulfolane degradation. The enhancement of sulfolane degradation in an open reservoir by adding ozone was not observed in this study. Furthermore, an operational cost model was formulated to optimize the dosage of H2O2, and a stepwise procedure was developed to determine the power necessary of the UV unit.


2005 ◽  
Vol 40 (1) ◽  
pp. 82-90 ◽  
Author(s):  
Biswaranjan Manna ◽  
Uday Chand Ghosh

Abstract Pilot-scale performance in reducing excess iron and arsenic from contaminated groundwater has been systematically reported. Here, a double column unit, the first packed with β-MnO2 and the second with crystalline FeOOH (goethite variety), with filters attached to the outlet of hand-pump tube-wells has been used in the field. Results showed that the filters generate 10,000 to 15,000 BV and 19,000 to 35,000 BV water with iron ≤ 0.3 mg/L and arsenic ≤10 µg/L from groundwater having influent iron and arsenic levels of 3.75 to 7.25 mg/L and 70 to 220 µg/L, respectively. The downflow rate of effluent water was 237.6 to 305.5 L/m2-min. The performance results were achieved with a single charging of the iron and arsenic removal media. Toxicity characteristic leaching procedure (TCLP) tests of the waste (arsenic content: 2.4 g/kg) showed that it is not hazardous to the environment and does not pose any risk to users. Cost evaluation showed $US0.50 to 0.70 per 1000 gallons of treated water and, hence, the technology is cost-effective for countries such as India and Bangladesh.


2011 ◽  
Vol 159 (12) ◽  
pp. 3769-3776 ◽  
Author(s):  
Eva M. Seeger ◽  
Peter Kuschk ◽  
Helga Fazekas ◽  
Peter Grathwohl ◽  
Matthias Kaestner

2011 ◽  
Vol 37 (6) ◽  
pp. 903-913 ◽  
Author(s):  
M. Braeckevelt ◽  
N. Reiche ◽  
S. Trapp ◽  
A. Wiessner ◽  
H. Paschke ◽  
...  

2009 ◽  
Vol 59 (5) ◽  
pp. 1003-1009 ◽  
Author(s):  
M. H. So ◽  
J. S. Han ◽  
T. H. Han ◽  
J. W. Seo ◽  
C. G. Kim

The cyclic ether 1,4-dioxane is a synthetic industrial chemical that is used as a solvent in producing paints and lacquers. The EPA and the International Agency for Research on Cancer(IARC) classified 1,4-dioxane as a GROUP B2(probable human) carcinogen. 1,4-dioxane is also produced as a by-product during the manufacture of polyester. In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, Korea was investigated regarding the release of high concentrations of 1,4-dioxane (about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2010). A 10 ton/day pilot-scale treatment system using photo-Fenton oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2800 ppm H2O2 and 1,400 ppm FeSO4 were maintained along with 10 UV-C lamps (240 μW/cm2) installed and operated continuously during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L where TOC concentration in the effluent had been moreover increased due to decomposed products such as aldehydes and organic acids. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane and their by-products (i.e., TOC). As a result, 1,4-dioxane in the effluent has been decreased as low as 0.5 mg/L. The optimal conditions for the activated sludge process that were obtained are as follows: DO, 3-3.5 mg/L; HRT, 24 h; SRT 15 d; MLSS, 3,000 mg/L. Consequently, photo-Fenton oxidation coupled with activated sludge can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard.


Sign in / Sign up

Export Citation Format

Share Document