The Effect of Climate Change on River Flow and Snow Cover in the NOPEX Area Simulated by a Simple Water Balance Model

1997 ◽  
Vol 28 (4-5) ◽  
pp. 273-282 ◽  
Author(s):  
C-Y Xu ◽  
Sven Halldin

Within the next few decades, changes in global temperature and precipitation patterns may appear, especially at high latitudes. A simple monthly water-balance model of the NOPEX basins was developed and used for the purposes of investigating the effects on water availability of changes in climate. Eleven case study catchments were used together with a number of climate change scenarios. The effects of climate change on average annual runoff depended on the ratio of average annual runoff to average annual precipitation, with the greatest sensitivity in the catchments with lowest runoff coefficients. A 20% increase in annual precipitation resulted in an increase in annual runoff ranging from 31% to 51%. The greatest changes in monthly runoff were in winter (from December to March) whereas the smallest changes were found in summer. The time of the highest spring flow changed from April to March. An increase in temperature by 4°C greatly shortened the time of snow cover and the snow accumulation period. The maximum amount of snow during these short winters diminished by 50% for the NOPEX area even with an assumed increase of total precipitation by 20%.

2010 ◽  
Vol 27 ◽  
pp. 57-64 ◽  
Author(s):  
M. Wegehenkel ◽  
U. Heinrich ◽  
H. Jochheim ◽  
K. C. Kersebaum ◽  
B. Röber

Abstract. Future climate changes might have some impacts on catchment hydrology. An assessment of such impacts on e.g. ground water recharge is required to derive adaptation strategies for future water resources management. The main objective of our study was an analysis of three different regional climate change scenarios for a catchment with an area of 2415 km2 located in the Northeastern German lowlands. These data sets consist of the STAR-scenario with a time period 1951–2055, the WettReg-scenario covering the period 1961–2100 and the grid based REMO-scenario for the time span 1950–2100. All three data sets are based on the SRES scenario A1B of the IPCC. In our analysis, we compared the meteorological data for the control period obtained from the regional climate change scenarios with corresponding data measured at meteorological stations in the catchment. The results of this analysis indicated, that there are high differences between the different regional climate change scenarios regarding the temporal dynamics and the amount of precipitation. In addition, we applied a water balance model using input data obtained from the different climate change scenarios and analyzed the impact of these different input data on the model output groundwater recharge. The results of our study indicated, that these regional climate change scenarios due to the uncertainties in the projections of precipitation show only a limited suitability for hydrologic impact analysis used for the establishment of future concrete water management procedures in their present state.


2020 ◽  
Vol 6 (9) ◽  
pp. 1715-1725 ◽  
Author(s):  
Safieh Javadinejad ◽  
Rebwar Dara ◽  
Forough Jafary

Climate change is an important environmental issue, as progression of melting glaciers and snow cover is sensitive to climate alteration. The aim of this research was to model climate alterations forecasts, and to assess potential changes in snow cover and snow-melt runoff under the different climate change scenarios in the case study of the Zayandeh-rud River Basin. Three cluster models for climate change (NorESM1-M, IPSL-CM5A-LR and CSIRO-MK3.6.0) were applied under RCP 8.5, 4.5 and 2.6 scenarios, to examine climate influences on precipitation and temperature in the basin. Temperature and precipitation were determined for all three scenarios for four periods of 2021-2030, 2031-2040, 2041-2050 and 2051-2060. MODIS (MOD10A1) was also applied to examine snow cover using temperature and precipitation data. The relationship between snow-covered area, temperature and precipitation was used to forecast future snow cover. For modeling future snow melt runoff, a hydrologic model of SRM was used including input data of precipitation, temperature and snow cover. The results indicated that all three RCP scenarios lead to an increase in temperature, and reduction in precipitation and snow cover. Investigation in snowmelt runoff throughout the observation period (November 1970 to May 2006) showed that most of annual runoff is derived from snow melting. Maximum snowmelt runoff is generated in winter. The share of melt water in the autumn and spring runoff is estimated at 35 and 53%, respectively. The results of this study can assist water manager in making better decisions for future water supply.


Author(s):  
Panagiota G. Koukouli ◽  
Pantazis E. Georgiou ◽  
Dimitrios K. Karpouzos

In this work, the impacts of climate change on the water resources of the Olynthios River Basin in Northern Greece, were assessed. For this purpose, the climate change scenarios SRES and RCPs were used (SRES A1B, Α2 and RCP4.5, 8.5) - which were taken from two climate models, CGCM3.1/T63 and CanESM2, respectively - for two time periods (2031-2050 and 2081-2100) and for the baseline period (1981-2000). The downscaling was performed using the weather generator ClimGen. The monthly water balance of the Olynthios River Basin was estimated with the use of a conceptual water balance model. Results showed that the annual runoff of the river basin of Olynthios will decrease in response to climate change under all scenarios for both time periods. The results highlight the necessity for adequate adaptation strategies which could improve agricultural water management and reduce the impacts of climate change on agriculture.


Sign in / Sign up

Export Citation Format

Share Document