scholarly journals Interannual and Seasonal Temperature and Salinity Variations in the Gulf of Riga and Corresponding Saline Water Inflow From the Baltic Proper

2001 ◽  
Vol 32 (2) ◽  
pp. 135-160 ◽  
Author(s):  
Urmas Raudsepp

Salinity and temperature data from the Gulf of Riga, a semi-enclosed sub-basin of the Baltic Sea, were analyzed with a focus on interannual and seasonal variability. The data were compiled from measurements taken from 1973 to 1995, a period which includes the stagnation period in the Baltic Sea. Interannual and seasonal variations in the net inflow of saline water from the Baltic Proper were estimated from volume and salt conservation equations for the period 1973-90. The basic decreasing trend, superimposed interannual variations in salinity, and interannual and seasonal temperature variations in the Gulf of Riga coincided with corresponding changes above the halocline in the Baltic Proper. Seasonal salinity variations were notable in the Gulf of Riga as compared to the Baltic Proper, where variations were negligible. Estimated annual mean inflow varied between 2,000 and 5,000 m3/s (average 3,200 m3/s), with a notable increasing trend. A simultaneous increasing trend was extracted from annual mean river flow data. Short-term fluctuations (over 4-6 years) of annual mean inflow ran opposite to the fluctuations of the magnitude of river flow. The average salinity in the Gulf of Riga increased during strong inflow and weak river flow and decreased when inflow was weak and river flow was strong. Variations in the inflow of water salinity had a minor effect on salinity variations in the Gulf of Riga. Seasonal inflow was strongest in spring and autumn and weak in winter.

2017 ◽  
Vol 14 (8) ◽  
pp. 2113-2131 ◽  
Author(s):  
Ye Liu ◽  
H. E. Markus Meier ◽  
Kari Eilola

Abstract. Long-term oxygen and nutrient transports in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations with and without data assimilation covering the period 1970–1999 are carried out. Here, the weakly coupled scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate observed profiles in the reanalysis system. The reanalysis shows considerable improvement in the simulation of both oxygen and nutrient concentrations relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen-dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net transport (export minus import) of nutrients from the Baltic proper into the surrounding sub-basins (except the net phosphorus import from the Gulf of Riga and the net nitrogen import from the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are retained in this sub-basin. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.


2016 ◽  
Author(s):  
Ye Liu ◽  
H. E. Markus Meier ◽  
Kari Eilola

Abstract. The long-term oxygen and nutrient cycles in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations covering the period 1970–1999 are carried out with and without data assimilation, respectively. Here, the "weakly coupled" scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate the observed profiles in the reanalysis system. The simulation results show considerable improvements in both oxygen and nutrient concentrations in the reanalysis relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between subbasins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections, are calculated. Further, bottom areas of nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net exports of nutrients into the surrounding subbasins (except the phosphorus transport into the Gulf of Riga and the nitrogen transports into the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are buried in this subbasin. For the calculation of subbasin budgets, it is crucial where the lateral borders of the subbasins are located, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.


2020 ◽  
Author(s):  
Taavi Liblik ◽  
Stella-Theresa Stoicescu ◽  
Jaan Laanemets ◽  
Oliver Samlas ◽  
Kai Salm ◽  
...  

<p>Eutrophication and consequent increase in biomass production and sedimentation of organic material cause oxygen depletion of the deep layers and an increase in hypoxic bottom areas in the Baltic Sea.</p><p>The Baltic Sea – a semi-enclosed brackish sea – has restricted water exchange with the North Sea. High fresh water runoff and sporadic inflows of saline water through the Danish Straits maintain stratification. Seasonal thermocline and quasi-permanent halocline, their vertical location, shape and strength are sensitive to atmospheric forcing and influence the oxygen depletion in the near-bottom layer. Physical processes altering deoxygenation in the three sub-basins of the Baltic Sea (Baltic Proper, Gulf of Finland and Gulf of Riga) are under scope of the present overview. Permanent halocline is present in the deep Baltic Proper, while in the Gulf of Finland, it occasionally vanishes during winter. Complete mixing occurs in each winter in the shallow Gulf of Riga separated from the Baltic Proper by the sill. We show that the bathymetry, combined with physical drivers, causes distinct spatial and temporal patterns of oxygen depletion in the basins. The results presented here are a summary of in-situ measurement campaigns conducted by the research vessel, underwater glider, autonomous vertical profiler and bottom moorings in 2011–2020.</p><p>Large barotropic inflows from the North Sea temporarily ventilate the deep layer of the Central Baltic Proper, but rather intensify hypoxia in the Northern Baltic Proper and the Gulf of Finland. Wind-driven estuarine circulation alterations shape the hypoxic area and volume in the Gulf of Finland considerably. Seaward winds support estuarine circulation and the advection of hypoxic saltier water of the Northern Baltic Proper into the gulf deep layer. The landward wind can reverse estuarine circulation, the collapse of stratification and mixing of the whole water column in winter (when the seasonal thermocline is absent), thus, temporarily improving oxygen conditions in the deep layer of the gulf. Intrusion of cold saltier water of the Baltic Proper over the sill into the Gulf of Riga deep layer strengthens water column stratification and supports hypoxia formation in summer. Such a water exchange regime is related to the northerly wind forced upwelling along the eastern coast of the Baltic Proper. The role of submesoscale processes on vertical mixing and deep layer ventilation is still unclear, and the data of high-resolution in situ measurements in the Baltic Sea is limited yet. Preliminary results from the dedicated underwater glider surveys conducted at the coastal slope of Eastern Baltic Proper in 2019-2020 will be presented.</p>


2016 ◽  
Vol 13 (9) ◽  
pp. 2815-2821 ◽  
Author(s):  
Federico Baltar ◽  
Catherine Legrand ◽  
Jarone Pinhassi

Abstract. Extracellular enzymatic activities (EEAs) are a crucial step in the degradation of organic matter. Dissolved (cell-free) extracellular enzymes in seawater can make up a significant contribution of the bulk EEA. However, the factors controlling the proportion of dissolved EEA in the marine environment remain unknown. Here we studied the seasonal changes in the proportion of dissolved relative to total EEA (of alkaline phosphatase (APase), β-glucosidase (BGase), and leucine aminopeptidase (LAPase)), in the Baltic Sea for 18 months. The proportion of dissolved EEA ranged between 37 and 100, 0 and 100, and 34 and 100 % for APase, BGase, and LAPase, respectively. A consistent seasonal pattern in the proportion of dissolved EEA was found among all the studied enzymes, with values up to 100 % during winter and  <  40 % during summer. A significant negative relation was found between the proportion of dissolved EEA and temperature, indicating that temperature might be a critical factor controlling the proportion of dissolved relative to total EEA in marine environments. Our results suggest a strong decoupling of hydrolysis rates from microbial dynamics in cold waters. This implies that under cold conditions, cell-free enzymes can contribute to substrate availability at large distances from the producing cell, increasing the dissociation between the hydrolysis of organic compounds and the actual microbes producing the enzymes. This might also suggest a potential effect of global warming on the hydrolysis of organic matter via a reduction of the contribution of cell-free enzymes to the bulk hydrolytic activity.


2002 ◽  
Vol 17 (3) ◽  
pp. 12-1-12-14 ◽  
Author(s):  
Bo G. Gustafsson ◽  
Per Westman

2000 ◽  
Vol 35 (4) ◽  
pp. 373-385 ◽  
Author(s):  
S. Vilbaste ◽  
K. Sundbäck ◽  
C. Nilsson ◽  
J. Truu

2019 ◽  
Vol 76 (6) ◽  
pp. 1653-1665 ◽  
Author(s):  
Jens Olsson ◽  
Eglė Jakubavičiūtė ◽  
Olavi Kaljuste ◽  
Niklas Larsson ◽  
Ulf Bergström ◽  
...  

Abstract Declines in predatory fish in combination with the impact of climate change and eutrophication have caused planktivores, including three-spined stickleback (Gasterosteus aculeatus), to increase dramatically in parts of the Baltic Sea. Resulting impacts of stickleback on coastal and offshore foodwebs have been observed, highlighting the need for increased knowledge on its population characteristics. In this article, we quantify abundance, biomass, size structure, and spatial distribution of stickleback using data from the Swedish and Finnish parts of the Baltic International Acoustic Survey (BIAS) during 2001–2014. Two alternative methods for biomass estimation suggest an increase in biomass of stickleback in the Baltic Proper, stable or increasing mean size over time, and larger individuals toward the north. The highest abundance was found in the central parts of the Baltic Proper and Bothnian Sea. The proportion of stickleback biomass in the total planktivore biomass increased from 4 to 10% in the Baltic Proper and averaged 6% of the total planktivore biomass in the Bothnian Sea. In some years, however, stickleback biomass has ranged from half to almost twice that of sprat (Sprattus sprattus) in both basins. Given the recent population expansion of stickleback and its potential role in the ecosystem, we recommend that stickleback should be considered in future monitoring programmes and in fisheries and environmental management of the Baltic Sea.


2007 ◽  
Vol 24 (9) ◽  
pp. 1655-1664 ◽  
Author(s):  
Jenny A. U. Nilsson ◽  
Peter Sigray ◽  
Robert H. Tyler

Abstract The possibility of using data from a cable-based observational system for long-term monitoring of barotropic flow in the Baltic Sea was investigated. Measurements were made of the induced potential differences between Visby on the island of Gotland and Västervik on the Swedish mainland and a yearlong period was studied in order to ensure the presence of seasonal fluctuations. The predictions from a 2D electric-potential model, forced by velocity fields from a shallow-water circulation model, proved to be well correlated with the observations. A winter and a summer period were selected for a thorough analysis, the results of which indicated a stronger correlation during winter. This implies that the relative importance of the barotropic forcing tends to weaken during summer. The spatial coverage of the induced potential differences for the cable region was found to encompass a considerable part of the Baltic proper. The correlation study indicated that the winter circulation in the Baltic proper showed “broad-scale” motion, whereas summer conditions were characterized by a barotropic gyre. An overall result of the investigation is that geoelectric monitoring is capable of providing useful data for oceanographic purposes.


Sign in / Sign up

Export Citation Format

Share Document