Water quality management in the context of future climate and development changes: a South African case study

2016 ◽  
Vol 7 (4) ◽  
pp. 775-787 ◽  
Author(s):  
A. S. Slaughter ◽  
S. K. Mantel ◽  
D. A. Hughes

Globally, water resources are being over-utilised; a situation exacerbated by degenerating water quality of rivers. To achieve sustainable management of water resources, uncertainty under climate change and development must be considered. A companion study was the first to incorporate uncertainty within water resources development scenario modelling for a catchment in South Africa using the Water Evaluation and Planning (WEAP) model. That study is extended in the current study by considering water quality in the form of nutrients and salinity. The WEAP model was calibrated against available observed data for the period 1999–2005. Using the calibrated WEAP model, driven by flow predicted using downscaled climate change models and projected future development, water quality was simulated for the years 2046–2065. Future simulations indicated marginally increased dilution capacity as well as increased nutrient inputs. It is evident that WEAP suffers major limitations in its water quality simulation capacity. Adaptive management along with continual monitoring as a strategy to cope with uncertainty associated with climate change and development is recommended. The shortcomings identified within WEAP in the current study were the motivation for the development of a new water quality decision support system specific to the requirements of water management in southern Africa.

2022 ◽  
Author(s):  
Rana Salim Abou Slaymane ◽  
M. Reda Soliman

Abstract The impacts of the growing population at Lebanon including Lebanese, Palestinian and Syrian refugees, associated with the changing climate parameters such that the precipitation are putting the Bekaa Valley’s water resources in a stymie situation. The water resources are under significant stress limiting the water availability and deteriorating the water quality at the Upper Litani River Basin (ULRB) within the Bekaa Valley region. These impacts are assessed by Water Evaluation And Planning model to assure the water balance and quality at baseline scenario in 2013, and future scenarios reaching 2095, serving by the Watershed Modeling System to get the flow throughout the Litani River’s ungauged zones. Moreover, a General Circulation Model is used to predict the future climate up to 2100 under several emissions scenarios which shows a critical situation at the high emission scenario where the precipitation will be reduced about 87 mm from 2013 to 2095. The aim of this research is to reduce the water pollution that limits the availability of usable water, and to minimize the gap between the demand and supply of water within the ULRB in order to maintain water resources sustainability, and preserves its quality, even after 80 years. In particular, this may be achieved by removing encroachments on the river, by adding waste water treatment plants, by reducing the amount of lost water in damaged water network, and by avoiding the overconsumption of groundwater.


Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 115 ◽  
Author(s):  
Roxelane Cakir ◽  
Mélanie Raimonet ◽  
Sabine Sauvage ◽  
Javier Paredes-Arquiola ◽  
Youen Grusson ◽  
...  

Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and −31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources.


2020 ◽  
Author(s):  
Leonardo David Donado ◽  
María Cristina Arenas-Bautista

<p>Water resources management must be in all cases, effective, efficient and sustainable, especially when considering the effects of climate change and variability effects. The challenge tackled in this research was to build a hydro-economic optimization model, which can be used as a decision-making tool for water assignment between several users in a tropical region. The model has been developed by integrating hydrological aspects (surface water and groundwater) in an economical optimization framework for water allocation and water quality management.</p><p>We study a basin of 17 000 km2 located in the Colombian Middle Magdalena Valley (MMV), a central area with important economic activities, as oil and gas exploration and production (O&G), agriculture and livestock.</p><p>A regional optimization model that integrates multiple water supplies and demands were designed.  The main purpose of the model is to maximize the value of water consumption. Consequently, the hydro-economic model was solved through a lineal optimization process, that links all available water resources and all water demands under the limitations of: (i) demand rising, (ii) water quality variance and (ii) offer decrease.</p><p>The system considers the monthly water demand from each user and a penalty for no satisfy it. For hydro-economic analysis, the model contemplates four main study scenarios: (i) current mean condition (ESC1), (ii) at thirty years (ESC2), (iii) at fifty years (ESC3) and, (iv) at hundred years (ESC4). These scenarios show fluctuation in water demand, and water supply based on the population increase. The results show significant differences between the user's allocation regimes. This has been identified between domestic and agricultural sectors, but not between commercial activities. According to the later, it is important to include variable rates for each sector according to its productivity, in the general analysis.</p><p>The defined objective function maximizes the profit in the MMV basin during a planning period of a year.  It is important to highlight that the whole system was optimized under an equitable distribution in allocation and costs, and thus, the resulting profits would improve results to satisfy all economic sectors.</p>


Author(s):  
A. A. Alazzy ◽  
H. Lü ◽  
Y. Zhu

Abstract. Syria is one of the Middle Eastern countries that suffer from scarcity in water resources availability, which affects the growth and development of economic activities. In this research, the Water Evaluation and Planning (WEAP) model is applied to evaluate future water demand in the Euphrates and Aleppo basin (EAB), Syria, by taking into account the climate change that may affect water demand in the domestic, industrial, and agricultural sectors until 2050. The climate change projections of temperature and precipitation were assessed using a new version of the MAGICC/SCENGEN tool with two greenhouse gas emissions scenarios (A2 and B2) of the Intergovernmental Panel on Climate Change (IPCC). Based on the results of IPCC (A2, B2) scenarios projections, the EAB basin is likely to face a decrease in precipitation amount by 21 % according to A2 and by 12 % according to B2, while temperature would increase by about 2.5 °C according to A2 and by 2 °C according to B2. Within the three scenarios adopted in this research: (1) available technology development; (2) increasing treated wastewater in agriculture and industry sectors; (3) and two combined scenarios, the results of the simulation demonstrated that the proposed scenarios are effective for reducing stressors on EAB’s water resources, but are not sustainable to bridge the gap between demand-supply by the year 2050, which leads to the deterioration of the available water resources.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251489
Author(s):  
Patrick A. Breach ◽  
Slobodan P. Simonovic

The ANEMI model is an integrated assessment model of global change that emphasizes the role of water resources. The model is based on the principles of system dynamics simulation to analyze changes in the Earth system using feedback processes. Securing water resources for the future is a key issue of global change, and ties into global systems of population growth, climate change, carbon cycle, hydrologic cycle, economy, energy production, land use and pollution generation. Here the third iteration of the model–ANEMI3 is described, along with the methods used for parameter estimation and model testing. The main differences between ANEMI3 and previous versions include: (i) implementation of the energy-economy system based on the principles of system dynamics simulation; (ii) incorporation of water supply as an additional sector in the global economy that parallels the production of energy; (iii) inclusion of climate change effects on land yield and potentially arable land for food production, and (iv) addition of nitrogen and phosphorus based nutrient cycles as indicators of global water quality, which affect the development of surface water supplies. The model is intended for analyzing long-term global feedbacks which drive global change. Because of this, there are limitations related to the spatial scale that is used. However, the model’s simplicity can be considered a strength, as it allows for the driving feedbacks to be more easily identified. The model in its current form allows for a variety of scenarios to be created to address global issues such as climate change from an integrated perspective, or to examine the change in one model sector on Earth system behaviour. The endogenous structure of the model allows for global change to be driven entirely by model structure rather than exogenous inputs. The new additions to the ANEMI3 model are found to capture long term trends associated with global change, while allowing for the development of water supplies to be represented using an integrated approach considering global economy and surface water quality.


2021 ◽  
Vol 31 (1) ◽  
pp. 200-215
Author(s):  
Naouel Dali

Abstract Water in the Gareat El Tarf basin, is affected by climatic and economic constraints; while its development is based on the agricultural sector, which creates pressure on water resources. The objective of this study is to analyse the performance of the national water plan to accompany this policy, and the impact of climate change on water resources. The methodology adopted is the application of the WEAP(Water Evaluation and the Planning)software, in order to build a model for the allocation of water resources, up to 2050. The results obtained confirm that the impact of the economic policy shows a very important deficit that exceeds 400 million m3 in 2050. To face this challenge, it is recommended to adopt an economic strategy based on the protection of water resources and adapted to the supply capacities of renewable water resources.


2019 ◽  
pp. 143-153
Author(s):  
Natalya Kosolapova ◽  
Lyudmila Matveeva ◽  
Olga Chernova

The purpose of this article is to study the processes of water quality management, which are considered as the main factor of the strategic social and economic development of the region and also to form tools supporting this process. The article analyzes the state and development trends of the water sector of the Rostov region from the standpoint of solving the problems of its strategic social and economic development. The authors demonstrate the possibility of intellectualization of regional strategizing processes through the use of water quality monitoring of the knowledge of experts with the use of fuzzy logic. The review of existing approaches to the assessment of water resources quality is given. It is shown that these approaches do not take into account the different requirements of water users to the content of chemicals and compounds in the water but assess the state of water resources in terms of conformity of concentration indices of polluting substances to maximally allowable concentrations. The authors suggest assessing the quality of water resources in compliance with the criteria of the contamination of water resources set for every category of water users. The approach proposed by the authors implies the assessment of water quality in two modes – differentiated and complex. Meanwhile, the suggested tools are universal and can be used in the systems of regional strategizing of the use of various water basins. A conceptual representation of the structure of the management system of water resources quality in the region within the system of regional strategizing is formed and the main problems of its development are identified.


Sign in / Sign up

Export Citation Format

Share Document