scholarly journals Contrasting occurrence of Chromobacterium violaceum in tropical drinking water springs of Uganda

2005 ◽  
Vol 3 (3) ◽  
pp. 229-238 ◽  
Author(s):  
Denis Byamukama ◽  
Frank Kansiime ◽  
Andreas H. Farnleitner ◽  
Martina Burtscher ◽  
Robert L. Mach ◽  
...  

Occurrence of Chromobacterium violaceum in six protected drinking water springs in Uganda was investigated. C. violaceum showed a contrasting occurrence, which was independent of human impact as assessed by faecal pollution indicators. It was isolated from two springs (S1 and S2) that were located close to each other (3 km) but not in the rest. In S1 C. violaceum was continuously detected, in concentrations ranging from 6 to 270 cfu 100 ml−1, while in S2 it was detected on only one sampling occasion. C. violaceum was never detected in the investigated upper soil layers (down to 15 cm) in the immediate surroundings (50 m radius) of the springs, despite continued isolation of faecal indicators. The results of the study indicate that C. violaceum may not be ubiquitous in spring water, but could occur in significant numbers in particular potable groundwaters as an autochthonous member.

2020 ◽  
Vol 99 (11) ◽  
pp. 1294-1300
Author(s):  
Anton V. Kosarev ◽  
Dmitriy E. Ivanov ◽  
Anatoliy N. Mikerov ◽  
Kseniya A. Savina

Introduction. Chemical factors affect the emergence of carcinogenic and non-carcinogenic health risks when drinking water consumed in the arid regions of Russia and the world. Material and methods. The objects of the study are samples of water springs located in the city of Saratov. Methods of atomic-absorption spectrometry, spectrophotometry, and potentiometry were used to determine contaminants’ content in water of springs. The health and hygiene safety of spring water was assessed by calculating carcinogenic and non-carcinogenic risk, hazard level, and total hazard level. Results. The unacceptable level of non-carcinogenic risk (HI>1) was established to refer to the development of pathologies of the cardiovascular system and liver and the gastrointestinal tract, kidneys, skin, endocrine system. Nitrates are the greatest contributor to the formation of non-carcinogenic hazards of spring water from the sources studied. Discussion. The processes of rotting plant matter, agricultural activities, and exchange between water and underlying aquifer caused the exceeding of the admissible health risk of water springs located at higher elevations was mainly due to. The highest frequency and magnitude of excess non-carcinogenic sanitary and chemical indices are most often characteristic of springs at the highest elevations or located in the zone of active agricultural activity. The Ni2+ ion, with the highest amount of the total carcinogenic risk caused the carcinogenic effect mainly. It corresponds to springs located on the slopes near the freeways. Conclusion. Nitrates, nickel, cadmium, and iron, made the most significant contribution to the risk of non-carcinogenic exposure in drinking water from the studied springs have. The presence of nickel had a more pronounced carcinogenic effect. Toxic non-carcinogenic water action is directed mainly at the cardiovascular system and liver. The use of water from the springs studied decreases with the increase in the height of the source above sea level caused the probability of non-carcinogenic and carcinogenic effects. The exchange processes with the underlying aquifer of carbonate rocks, as well as the life of iron-healing bacteria during floods and rains, can explain the effect of the arid climate on the distribution of carcinogenic and non-carcinogenic risks in the spring water of Saratov.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 51-54
Author(s):  
J. Fettig

Abstract The structure of public water supply in Germany and the water resources used are briefly described. An overview over the legal requirements for drinking water is given, and the sources for contaminants are outlined. Then the multiple-barrier approach is discussed with respect to the resources groundwater and spring water, lake and reservoir water, and river water. Examples for treatment schemes are given and the principle of subsurface transport of river water as a first treatment step is described.


1991 ◽  
Vol 24 (2) ◽  
pp. 121-124 ◽  
Author(s):  
A. de Vicente ◽  
J. C. Codina ◽  
P. Romero

The relationship between Pseudomonas aeruginosa and the faecal pollution index (total coliforms, faecal coliforms and faecal streptococci) in natural waters was established. Water samples were collected from several aquatic environments in Málaga (Spain). P. aeruginosa counts and isolation frequencies were clearly associated with the degree of faecal pollution of the studied water. The results confirmed that domestic sewage was the major source of P. aeruginosa in river and seawater, being isolated from sewage at concentrations about 105 cfu/100 ml. There was a close correlation between the P. aeruginosa concentration and the densities of the three faecal indicators in both river and marine waters. A significant correlation was not observed in waters with little faecal pollution because P. aeruginosa was only occasionally isolated from these waters and at very low densities. P. aeruginosa concentrations in sewage and polluted natural waters were generally 3-4 log lower than the TC densities and 2 log lower than FC and FS concentrations. TC, FC and FS could be considered adequate indicators of the presence and densities of P. aeruginosa in natural waters, especially TC in freshwaters and FS in seawater respectively, as these parameters showed the best correlations and the most parallel inactivation processes with P. aeruginosa in each environment.


Author(s):  
Durga D. Poudel ◽  
Timothy W. Duex ◽  
Roshan Poudel

Drinking water security is increasingly becoming a global concern in recent decades. The mid-hill region of Nepal is also experiencing serious water shortages in recent years. In order to assess the availability of drinking water in the mid-hill regions of Nepal, we studied hydrogeology, land use types and collected water samples from 30 springs in Kavre, Kahmandu Valley, Nuwakot and Tanahu in Nepal between July 17-September 12, 2017. For each sampling spring, while surrounding land use type (mixed, agriculture, urban, vegetation) and spring type (fracture, depression, contact) were determined through field observation, the field pH, conductivity and temperature was determined using relevant probes and thermometers. Water samples were collected in 1L and 165mL plastic bottles for chemical and total coliform determination, respectively, in the lab. Bottles were rinsed twice using spring water before filling them with sample water, then stored in an ice chest, and brought to the lab. In the laboratory, turbidity, conductivity, Ca, Mg, HCO3, SO4, Na, NO3, Cl, Fe, As, and total coliform were determined using standard methods. Spring water in agricultural areas showed significantly higher suspended solids compared to other land use types whereas spring water in urban areas showed significantly higher dissolved substances. By spring type, turbidity and conductivity values and the concentration of dissolved constituents (Ca, Mg, HCO3, SO4, NO3, and Cl) were ranked in the order of fracture < contact < depression. Na and Fe concentration were in the order of fracture = contact < depression. By land-use type, conductivity and dissolved constituents (Ca, Mg, HCO3) were in the order of agriculture < vegetation < mixed < urban. Whereas urban land use had the highest values for SO4, Na, NO3, and Cl, other land use types showed variable order. Fe concentration was ranked in the order of urban < mixed < vegetation < agriculture. Total coliform was in the order of mixed < agriculture < urban < vegetation. These results indicate that land use type and surface condition, which is possibly associated with human activities, heavily affect spring water properties in the region. These results suggest that drinking water security of mid-hill region of Nepal is threatened heavily due to poor spring water quality. Protection of drinking water sources should be specific to land use type and activities around the springs. Index Terms— three to six pertinent, specific to the paper, keywords added after the abstract, separated by commas.


2012 ◽  
Vol 9 ◽  
pp. 52-56
Author(s):  
Bishnu Pandey ◽  
Suman Shakya

This study assesses the rural drinking water quality status in Central Development Region of Nepal. With a total of 250 samples collected from 15 districts of the region, drinking water quality of spring water and ground water representing hill and Terai (lowland) regions were tested and compared for their physicochemical parameters and faecal coliform contamination.None of the spring samples as well as ground water samples violated National Drinking Water Standards (NDWS) for electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), appearance, chloride and nitrate. Similarly none violated the standards for total hardness (TH) indicating soft nature of the water. The spring samples were within the NDWS for manganese (Mn) and iron (Fe) whereas 15.4% and 39.0% of the ground water samples violated the standards for manganese and iron, respectively. Gravity water is found to be more alkaline than ground water. Faecal coliforms were the most problematic in both types of sources followed by Ammonia (NH3) and pH in spring sources and by iron, Mn, pH and ammonia in ground water sources, respectively. Spring sources were more contaminated by bacteria than ground water sources. Correlation and regression analysis revealed highly significant correlations between EC and TDS (r=0.979) and between CaH and TH (r=0.988) in ground water suggesting that aquifer chemistry of ground water to be mainly controlled by EC, TDS, TH, and CaH. Similarly, highly significant correlations were found between the following pairs in gravity water: EC and TDS (r=0.983), TA and TDS(r=0.853), CaH and TDS (r=0.912), TH and TDS (r=0.955), EC and CaH (r=0.898), and between CaH and TH (r=0.951).DOI: http://dx.doi.org/10.3126/hn.v9i0.7074 Hydro Nepal Vol.9 July 2011 52-56


1997 ◽  
Vol 34 (11) ◽  
pp. 908-912 ◽  
Author(s):  
V. Bruni ◽  
T.L. Maugeri ◽  
L. Monticelli

2012 ◽  
Vol 10 (3) ◽  
pp. 471-483 ◽  
Author(s):  
A. Farkas ◽  
M. Drăgan-Bularda ◽  
D. Ciatarâş ◽  
B. Bocoş ◽  
Ş. Ţigan

Biofouling occurs without exception in all water systems, with undesirable effects such as biocorrosion and deterioration of water quality. Drinking water associated biofilms represent a potential risk to human health by harbouring pathogenic or toxin-releasing microorganisms. This is the first study investigating the attached microbiota, with potential threat to human health, in a public water system in Romania. The presence and the seasonal variation of viable faecal indicators and opportunistic pathogens were investigated within naturally developed biofilms in a drinking water treatment plant. Bacterial frequencies were correlated with microbial loads in biofilms as well as with physical and chemical characteristics of biofilms and raw water. The biofilms assessed in the current study proved to be extremely active microbial consortia. High bacterial numbers were recovered by cultivation, including Pseudomonas aeruginosa, Escherichia coli, Aeromonas hydrophila, intestinal enterococci and Clostridium perfringens. There were no Legionella spp. detected in any biofilm sample. Emergence of opportunistic pathogens in biofilms was not significantly affected by the surface material, but by the treatment process. Implementation of a water safety plan encompassing measures to prevent microbial contamination and to control biofouling would be appropriate.


2010 ◽  
Vol 62 (8) ◽  
pp. 1898-1906 ◽  
Author(s):  
H. Stadler ◽  
E. Klock ◽  
P. Skritek ◽  
R. L. Mach ◽  
W. Zerobin ◽  
...  

Because spring water quality from alpine karst aquifers can change very rapidly during event situations, water abstraction management has to be performed in near real-time. Four summer events (2005–2008) at alpine karst springs were investigated in detail in order to evaluate the spectral absorption coefficient at 254 nm (SAC254) as a real-time early warning proxy for faecal pollution. For the investigation Low-Earth-Orbit (LEO) Satellite-based data communication between portable hydrometeorological measuring stations and an automated microbiological sampling device was used. The method for event triggered microbial sampling and analyzing was already established and described in a previous paper. Data analysis including on-line event characterisation (i.e. precipitation, discharge, turbidity, SAC254) and comprehensive E. coli determination (n&gt;800) indicated that SAC254 is a useful early warning proxy. Irrespective of the studied event situations SAC254 always increased 3 to 6 hours earlier than the onset of faecal pollution, featuring different correlation phases. Furthermore, it seems also possible to use SAC254 as a real-time proxy parameter for estimating the extent of faecal pollution after establishing specific spring and event-type calibrations that take into consideration the variability of the occurrence and the transferability of faecal material It should be highlighted that diffuse faecal pollution from wildlife and live stock sources was responsible for spring water contamination at the investigated catchments. In this respect, the SAC254 can also provide useful information to support microbial source tracking efforts where different situations of infiltration have to be investigated.


Sign in / Sign up

Export Citation Format

Share Document