scholarly journals A study of the insulating and anti-frost heave effects of polystyrene boards under molded bag concrete conditions

Water Policy ◽  
2021 ◽  
Author(s):  
Fuqiang Guo ◽  
Gangtie Li ◽  
Manjin Cheng

Abstract In this study, the channel frost heaving actions in the Hetao irrigation area of Inner Mongolia were examined and a field in-situ test platform was established. Then, experimental investigations were conducted regarding the insulating and anti-freeze effects of polystyrene boards under the conditions of concrete bags with different thicknesses. In this study's experiments, concrete bags with different thicknesses were set, along with a test block of polystyrene boards with different thicknesses. The research results showed that by adding 2–5 cm molded bags, the total accumulated temperature increased in the range of 3.93–9.22% and the frost heave rate decreased by between 18.28 and 55.44% concrete, on the basis of 10 cm molded bag concrete. In addition, when 4–8 cm polystyrene boards were laid, the total accumulated temperature increased by 207.63–272.25%, and the frost heave rate decreased by between 71.43 and 96.6%. The absolute slope of the curve fitting of the frost heave rates and the soil temperatures decreased by 44.6–58.7%. HIGHLIGHT The results show that, the biggest bending moment of channel slope is in the 1/3 of canal slope, the biggest shear is in the toe of slope, the biggest bending moment of canal bottom is in the 1/2 of the Canal bottom. According to the judgment of Typical Channel, frost heaving damage will occur on the slope and bottom of the South Branch Canal without taking insulation measures.

Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 979 ◽  
Author(s):  
Fuqiang Guo ◽  
Haibin Shi ◽  
Manjin Cheng ◽  
Wenhui Gao ◽  
Hongzhi Yang ◽  
...  

The damages resulting from frost heaving are the main causes of channel destruction in seasonal frozen soil regions. Over the years, many experimental studies have been performed regarding the channel anti-frost heaving in the Hetao irrigation area. However, there have been few experimental research studies conducted regarding the insulation and anti-frost heave effects of polystyrene boards (EPS) of different thicknesses. Therefore, in order to explore the insulation mechanism and anti-frost heave effects of precast EPS laid under the conditions of different thicknesses, an anti-frost heave test field was established in the Hetao irrigation area for the examination of the ground temperatures, frozen depths, frost heave amounts, and water content change rules. This study’s results showed that, for the laid EPS with thicknesses between 2 and 12 cm, the frost-heave reduction rate ranged from 53.2% to 92.6%; total accumulated temperature warming ranged from 248.65% to 565.93%; and the frozen depth reduction rate was between 59.8% and 75.9%. It was determined that the EPS per cm additions could effectively improve the ground temperatures at a buried depth of 30 cm by 0.78 °C, and reduce the frozen depth by 10.1 cm. Then, by comprehensively considering the positive economic and insulation effects, it was determined that the most appropriate thickness of the EPS laid under the precast concrete slabs in the Hetao irrigation area of Inner Mongolia was 8–10 cm.


2021 ◽  
Author(s):  
Stephen Peppin

A model of freezing soils is developed that accounts for the dependence of the frost heave rate on particle trapping. At sufficiently low cooling rates the soil experiences primary frost heave with a single growing ice lens that rejects all soil particles. At higher cooling rates ice lenses start to engulf the largest soil particles and the rate of segregation heave is reduced. At the highest freezing rates all particles are engulfed by the ice and the pore water freezes in situ. A new kinetic expression for the segregation potential of the soil is obtained that accounts for particle trapping. Using this expression a simple transient frost heave model is developed and compared with experimental data.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2021 ◽  
Vol 9 (6) ◽  
pp. 639
Author(s):  
Hong Zhang ◽  
Xiaolei Liu ◽  
Anduo Chen ◽  
Weijia Li ◽  
Yang Lu ◽  
...  

Liquefied submarine sediments can easily lead to submarine landslides and turbidity currents, and cause serious damage to offshore engineering facilities. Understanding the rheological characteristics of liquefied sediments is critical for improving our knowledge of the prevention of submarine geo-hazards and the evolution of submarine topography. In this study, an in situ test device was developed to measure the rheological properties of liquefied sediments. The test principle is the shear column theory. The device was tested in the subaqueous Yellow River delta, and the test results indicated that liquefied sediments can be regarded as “non-Newtonian fluids with shear thinning characteristics”. Furthermore, a laboratory rheological test was conducted as a contrast experiment to qualitatively verify the accuracy of the in situ test data. Through the comparison of experiments, it was proved that the use of the in situ device in this paper is suitable and reliable for the measurement of the rheological characteristics of liquefied submarine sediments. Considering the fact that liquefaction may occur in deeper water (>5 m), a work pattern for the device in the offshore area is given. This novel device provides a new way to test the undrained shear strength of liquefied sediments in submarine engineering.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6531 ◽  
Author(s):  
Zongxing Zou ◽  
Qi Zhang ◽  
Chengren Xiong ◽  
Huiming Tang ◽  
Lei Fan ◽  
...  

Slip zone soil is usually composed of clay or silty clay; in some special geological environments, it contains gravels, which make the properties of the slip zone soil more complex. Unfortunately, in many indoor shear tests, gravels are removed to meet the demands of apparatus size, and the in situ mechanical property of the gravelly slip zone soil is rarely studied. In this study, the shear mechanical property of the gravelly slip zone soil of Huangtupo landslide in the Three Gorges Reservoir area of China was investigated by the in situ shear test. The test results show that the shear deformation process of the gravelly slip zone soil includes an elastic deformation stage, elastic–plastic deformation stage, and plastic deformation stage. Four functions were introduced to express the shear constitutive model of the gravelly slip zone soil, and the asymmetric sigmoid function was demonstrated to be the optimum one to describe the relationship of the shear stress and shear displacement with a correlation coefficient of 0.986. The comparison between the in situ test and indoor direct shear test indicates that gravels increase the strength of the slip zone soil. Therefore, the shear strength parameters of the gravelly slip zone soil obtained by the in situ test are more preferable for evaluating the stability of the landslide and designing the anti-slide structures.


2016 ◽  
Vol 113 (28) ◽  
pp. 7722-7726 ◽  
Author(s):  
Gavin O. Jones ◽  
Alexander Yuen ◽  
Rudy J. Wojtecki ◽  
James L. Hedrick ◽  
Jeannette M. García

It is estimated that ∼2.7 million tons poly(carbonate)s (PCs) are produced annually worldwide. In 2008, retailers pulled products from store shelves after reports of bisphenol A (BPA) leaching from baby bottles, reusable drink bottles, and other retail products. Since PCs are not typically recycled, a need for the repurposing of the PC waste has arisen. We report the one-step synthesis of poly(aryl ether sulfone)s (PSUs) from the depolymerization of PCs and in situ polycondensation with bis(aryl fluorides) in the presence of carbonate salts. PSUs are high-performance engineering thermoplastics that are commonly used for reverse osmosis and water purification membranes, medical equipment, as well as high temperature applications. PSUs generated through this cascade approach were isolated in high purity and yield with the expected thermal properties and represent a procedure for direct conversion of one class of polymer to another in a single step. Computational investigations performed with density functional theory predict that the carbonate salt plays two important catalytic roles in this reaction: it decomposes the PCs by nucleophilic attack, and in the subsequent polyether formation process, it promotes the reaction of phenolate dimers formed in situ with the aryl fluorides present. We envision repurposing poly(BPA carbonate) for the production of value-added polymers.


2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


Sign in / Sign up

Export Citation Format

Share Document