Removal of foaming from industrial wastewater treatment plants

2015 ◽  
Vol 10 (3) ◽  
pp. 415-423
Author(s):  
Nastaran Khodabakhshi ◽  
Gholamreza Asadollahfardi ◽  
Elnaz Shahriarinia

Proper operation of activated sludge systems is very important and depends on physical, chemical, and biological parameters of wastewater. In this study, some problems were studied in an existing wastewater treatment plant of a fish-canning factory located in Tehran where thick, brown, stable foam was observed in aeration and clarifier tanks. The effluent of this plant was higher than the standards of the Department of the Environment of Iran, and the pH in aeration tanks was lower than 5. As opposed to other researchers in solving the foaming problem, in this wastewater treatment plant, lime was used instead of organic polymers and other inorganic coagulants. The pH of aeration tanks was adjusted to between 6.5 and 8.5 with an injection of 500 mg/L (47.5 kg/day) lime in the chemical sedimentation tank. It appeared that the solid retention time in this plant was high. Therefore, the rate of return sludge in the aeration tank of the second stage was reduced by about 20%. Foaming was removed in 18 days. During this time, chemical oxygen demand (COD) of effluent went from 500 to 65 mg/L, which indicated 87% reduction. The estimated costs of using lime for removal of foaming were about 0.0029 Euros/day (0.004 dollars/day), which is very low.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Barbara Wodecka ◽  
Jakub Drewnowski ◽  
Anita Białek ◽  
Ewa Łazuka ◽  
Joanna Szulżyk-Cieplak

One of the important factors determining the biochemical processes in bioreactors is the quality of the wastewater inflow to the wastewater treatment plant (WWTP). Information on the quality of wastewater, sufficiently in advance, makes it possible to properly select bioreactor settings to obtain optimal process conditions. This paper presents the use of classification models to predict the variability of wastewater quality at the inflow to wastewater treatment plants, the values of which depend only on the amount of inflowing wastewater. The methodology of an expert system to predict selected indicators of wastewater quality at the inflow to the treatment plant (biochemical oxygen demand, chemical oxygen demand, total suspended solids, and ammonium nitrogen) on the example of a selected WWTP—Sitkówka Nowiny, was presented. In the considered system concept, a division of the values of measured wastewater quality indices into lower (reduced values of indicators in relation to average), average (typical and most common values), and upper (increased values) were adopted. On the basis of the calculations performed, it was found that the values of the selected wastewater quality indicators can be identified with sufficient accuracy by means of the determined statistical models based on the support vector machines and boosted trees methods.


2013 ◽  
Vol 1 (1) ◽  
pp. 1-13
Author(s):  
Riyadh M. S. Al-Obaidi

The biological unit in the wastewater treatment plants can be considered the most sensitive treatment units. It begins work with dynamic conditions for several weeks until reach the steady state conditions. Therefore, this study was done to observe aeration tank behavior (activated sludge unit) in the wastewater treatment plant of general hospital complex of Mosul city. Sampling made daily for more than 30 days. The biological treatment monitoring parameter was tested. The study shown that there is need to about 45-60 days to complete the start up work to be the operation stable and successful (if it worked without seeding). There was simple growth of microorganisms with modest treatment of organic matter, and then it rose after 3 first weeks of operation. There was contrary relationship between organic content and suspended solids in the aeration tank; an equation of this relation has been presented. The pH has risen in the first days in the effluent wastewater, then return to be less than influent pH with a relative relation with the activity of the microorganisms and surface aeration in the tank. The EC was simply reduced in the Effluent along with the study.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2007 ◽  
Vol 56 (7) ◽  
pp. 21-31 ◽  
Author(s):  
D. Brdjanovic ◽  
M. Mithaiwala ◽  
M.S. Moussa ◽  
G. Amy ◽  
M.C.M. van Loosdrecht

This paper presents results of a novel application of coupling the Activated Sludge Model No. 3 (ASM3) and the Anaerobic Digestion Model No.1 (ADM1) to assess a tropical wastewater treatment plant in a developing country (Surat, India). In general, the coupled model was very capable of predicting current plant operation. The model proved to be a useful tool in investigating various scenarios for optimising treatment performance under present conditions and examination of upgrade options to meet stricter and upcoming effluent discharge criteria regarding N removal. It appears that use of plant-wide modelling of wastewater treatment plants is a promising approach towards addressing often complex interactions within the plant itself. It can also create an enabling environment for the implementations of the novel side processes for treatment of nutrient-rich, side-streams (reject water) from sludge treatment.


2021 ◽  
Vol 221 ◽  
pp. 31-40
Author(s):  
A.S. Mubarak ◽  
Parvaneh Esmaili ◽  
Z.S. Ameen ◽  
R.A. Abdulkadir ◽  
M.S. Gaya ◽  
...  

1999 ◽  
Vol 40 (7) ◽  
pp. 55-65 ◽  
Author(s):  
Mohamed F. Hamoda ◽  
Ibrahim A. Al-Ghusain ◽  
Ahmed H. Hassan

Proper operation of municipal wastewater treatment plants is important in producing an effluent which meets quality requirements of regulatory agencies and in minimizing detrimental effects on the environment. This paper examined plant dynamics and modeling techniques with emphasis placed on the digital computing technology of Artificial Neural Networks (ANN). A backpropagation model was developed to model the municipal wastewater treatment plant at Ardiya, Kuwait City, Kuwait. Results obtained prove that Neural Networks present a versatile tool in modeling full-scale operational wastewater treatment plants and provide an alternative methodology for predicting the performance of treatment plants. The overall suspended solids (TSS) and organic pollutants (BOD) removal efficiencies achieved at Ardiya plant over a period of 16 months were 94.6 and 97.3 percent, respectively. Plant performance was adequately predicted using the backpropagation ANN model. The correlation coefficients between the predicted and actual effluent data using the best model was 0.72 for TSS compared to 0.74 for BOD. The best ANN structure does not necessarily mean the most number of hidden layers.


2019 ◽  
Vol 6 (1) ◽  
pp. 16-20
Author(s):  
Ali Akbar Rahmani Sarmazdeh ◽  
Mostafa Leili

This research mainly aimed to investigate phosphorus removal from stabilization pond effluent by using anionic resins in the continuous flow mode of operation due to high amounts of phosphorus in the wastewater treatment plant effluent of Kaboodrahang, western Iran, as well as the violation from a prescribed effluent standard to discharge receiving the surface waters. For this purpose, the pilot was made of a plexiglass cylinder and other equipment such as pump and other accessories, as well as Purolite A-100 resin. The reactor effects on the desired study parameters were assessed in two warm and cold seasons. The results showed that the phosphorus concentrations reduced from 7-10 mg/L to 4-7 mg/L and the rate of phosphorus removal was higher in the hot season compared to the cold season. Moreover, the optimum temperature and pH were obtained 21ºC and 8.5, respectively. The mean inlet biological oxygen demand (BOD) was 150 mg/L for both warm and cold seasons, where the highest removal rate of 17% was obtained in the cold season. The mean chemical oxygen demand concentration of the pilot was 250 mg/L for both seasons, and the highest removal rate was observed in the cold season with an efficiency of 18%. Regarding the total suspended solids with the mean inlet of 230 mg/L, the highest removal efficiency was obtained 6% in the warm season.


Sign in / Sign up

Export Citation Format

Share Document