Wastewater treatment challenges faced by the petrochemical and refinery industry, and opportunities for water reuse

2016 ◽  
Vol 11 (1) ◽  
pp. 104-117 ◽  
Author(s):  
C. Zaffaroni ◽  
G. Daigger ◽  
P. Nicol ◽  
T. W. Lee

Industrial wastewater differs from municipal wastewater. The limits for treated effluent discharge and targets for re-use are typically the same, and derived from the best available technology for municipal wastewater treatment. The main treatment unitary processes are also the same; although proper adaptation to specific, different, industrial wastewater streams is needed. This paper provides some examples of the challenges presented by specific wastewater sources (high total dissolved solids, high temperature, spent caustic, etc.), lack of previous similar experience – e.g., using membrane bioreactors for refinery wastewaters, and/or absorption chillers, and plate and frame heat exchangers) or to legislation protecting sensitive environments (limits on total nitrogen or soluble metals). The methods by which these were faced and overcome to achieve treatment and/or re-use standards are described. General water cycle optimization issues around industrial facilities with appropriate use of existing wastewater treatment units are also discussed, as well as selecting between treated municipal and industrial effluents as sources for water re-use.

2011 ◽  
Vol 1 (3) ◽  
pp. 141-151 ◽  
Author(s):  
Hussein I. Abdel-Shafy ◽  
Inka Hobus ◽  
Werner Hegemann

Upgrading of a pond system for municipal wastewater treatment in a decentralized area is evaluated. The pond was constructed for the treatment of 63 m3/d. Currently it receives 83 m3/d, therefore poor treatment efficiency was recorded. An expansion of 1.6 times the present land area was required. In addition to construction, operation and maintenance were required to meet the permissible limits. The other option was to introduce aeration system to the ponds without any additional requirements. The efficiency of the successive treatment steps on the wastewater quality, including metals in the treated effluent/sludge and bacterial counts, was evaluated for agricultural reuse. The physical, chemical and bacterial parameters as well as the input aeration load (h) during the study period were investigated extensively. The results indicated that remarkable improvement in the treated effluent was achieved after upgrading the pond system via aeration. The removal rate of the pollution parameters ranged from 75 to 85%. The level of heavy metals in the produced sludge was below the permissible concentration and does not represent any risk. Meanwhile, it was possible to avoid any requirements for addition land area or construction of treatment and proved that the treated effluents can be reused for restricted water reuse.


2013 ◽  
Vol 68 (3) ◽  
pp. 575-583 ◽  
Author(s):  
R. Mosteo ◽  
M. P. Ormad ◽  
P. Goñi ◽  
J. Rodríguez-Chueca ◽  
A. García ◽  
...  

The aim of this research work is to identify the presence of pathogens, bacteria and protozoa, in different treated urban wastewaters and to relate biological pollution with the processes used in wastewater treatment plants. A study of the possibilities for water reuse is carried out taking into account bacterial and parasite composition. The analysed bacteria and protozoa are: Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus, Clostridium perfringens (spore), Salmonella spp., Legionella spp., helminths eggs, Giardia, Cryptosporidium spp. and free-living amoebae (FLA). The selected municipal wastewater treatment plants (MWTPs) are located in Navarra (Spain) and the main difference between them is the use of natural lagoons as tertiary treatment in some plants. The results concerning bacteriological identification showed contamination of mainly faecal origin, and the use of natural lagoons as tertiary treatment in some MWTPs produced an important disinfection effect. Moreover, pathogen parasites such as Giardia and Cryptosporidium were not detected in the samples studied although FLA were identified in all cases.


2014 ◽  
Vol 70 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Asun Larrea ◽  
Andre Rambor ◽  
Malcolm Fabiyi

The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).


1984 ◽  
Vol 16 (5-7) ◽  
pp. 315-325 ◽  
Author(s):  
K R Imhoff ◽  
P Koppe ◽  
D R Albrecht

Induced by stringent standards for surface and drinking water, a cadmium balance for the Ruhr river basin has been calculated. This balance indicates the dominating impact of industrial wastewater discharge while the cadmium load of other sources is comparatively small. In order to reduce cadmium concentrations in river water and in sewage sludges and to avoid disturbances in municipal wastewater treatment plant operation, a control strategy has been developed to identify discharges under cover of darkness and to consult the particular industries. First positive results are dealt with.


2020 ◽  
Vol 194 ◽  
pp. 04009
Author(s):  
Qiaoquan Wei ◽  
Guanwen Cheng ◽  
Bangzhou Sun ◽  
Liao Zhang ◽  
Yuling Zhang ◽  
...  

Operation efficiency, effect and operation energy consumption are the main basis for the evaluation of the operation and management level of wastewater treatment plant. The statistics of the operation data of the small municipal wastewater treatment plant in Luocheng County show that the operation rate of the facility is high, and the treated effluent reaches the Level A standard of the “Discharge standard of pollutants for municipal wastewater treatment plant” (GB18918-2002), and the various evaluation indicators of the urban wastewater treatment plant basically normal. However, the average operating load of some municipal wastewater treatment plant has not reached the index requirement for the operation period of production, and the load rates of CODCr and NH4+-N are mostly below 60%, and wastewater treatment plant unit wastewater volume, unit CODCr and NH4+-N load energy consumption is high. The reason is that the water quality of the design of the micro-municipal wastewater treatment plant is not reasonable, the construction scale is too large, and the operation fails to adopt effective management and control technology measures.


Author(s):  
Robert Kreuzig ◽  
Jaqueline Haller-Jans ◽  
Cornelia Bischoff ◽  
Johannes Leppin ◽  
Jörn Germer ◽  
...  

AbstractFor a novel approach of resource-efficient water reuse, a municipal wastewater treatment plant was extended at pilot scale for advanced wastewater treatment, i.e., ozonation and biological activated carbon filtration, and a hydroponic system for reclaimed water driven lettuce cultivation. The treatment specific wastewater lines with the corresponding lettuce plants, differentiated into roots and shoots, were monitored for priority wastewater micropollutants, i.e., acesulfame (sweetener), caffeine (stimulant), carbamazepine, diclofenac, ibuprofen, sulfamethoxazole with acetyl-sulfamethoxazole (human pharmaceuticals), 1H-benzotriazole, and 4/5-methylbenzotriazole (industrial chemicals). As clearly demonstrated, conventional tertiary treatment could not efficiently clean up wastewater. Removal efficiencies ranged from 3% for carbamazepine to 100% for ibuprofen. The resulting pollution of the hydroponic water lines led to the accumulation of acesulfame, carbamazepine, and diclofenac in lettuce root systems at 32.0, 69.5, and 135 μg kg−1 and in the uptake of acesulfame and carbamazepine into lettuce shoots at 23.4 and 120 μg kg−1 dry weight, respectively. In contrast, both advanced treatment technologies when operating under optimized conditions achieved removal efficiencies of > 90% also for persistent micropollutants. Minimizing the pollution of reclaimed water thus met one relevant need for hydroponic lettuce cultivation. Graphical abstract


2006 ◽  
Vol 53 (3) ◽  
pp. 37-44 ◽  
Author(s):  
P. Cornel ◽  
S. Krause

In wastewater treatment, micro- and ultra-filtration membranes are used for the separation of the activated sludge (biomass) from the treated water. This offers the advantages of a complete removal of solids and bacteria, as well as most of the viruses, namely those attached to the suspended solids. Compared to the conventional activated sludge process (CAS) this technology allows a much higher biomass concentration (MLSS) whereby the reactor volume and the footprint decreases. With increasing MLSS, the viscosity of the sludge increases, which leads to reduced oxygen transfer rates. Depending on the type of membrane and membrane module, the pre-treatment has to be more sophisticated to prevent clogging and sludging of the modules. Due to fouling and scaling, the flux through the membranes will decrease with time. The decrease depends on the water quality as well as on the measurements taken to minimize fouling. Mainly, three strategies are available: lowering the flux, increasing the “crossflow” and cleaning of the membranes. Different strategies including backwash and chemical cleaning “in situ”, “on air” and “ex situ” can be applied. It has been proven more effective to apply preventive regular cleaning. Besides the energy demand for oxygen supply – which is typically in the range of 0.3 kWh/m3 for municipal wastewater – the energy for fouling prevention is substantial. Immersed membranes need approximately 0.4 to 1 kWh/m3 for the coarse bubble aeration, whereas tubular modules require 1 to 4 kWh/m3 pump energy. For proper design of industrial wastewater treatment, the verification of applicability and the development of adequate cleaning strategies, it is a precondition to run pilot tests for a sufficient period of time with the wastewater to be treated. More than 100 industrial wastewater treatment membrane bioreactors (MBR) are in operation in Europe. Data of three case studies for a sewage sludge dewatering plant in UK (12,000 m3/d), a plant for the treatment of pharmaceutical wastewater in Germany (3,600 m3/d), as well for revamping of an chemical WWTP >2,000 m3/d in Italy, are given. MBRs will be used in future wherever high quality effluent is required, because of a sensitive receiving water body or due to the fact of water reuse as process water. MBRs are a perfect pre-treatment in industrial applications when further treatment with nanofiltration or reverse osmosis is considered. The technique is advanced and can be applied both in municipal and industrial wastewater treatment. Higher operational costs must be balanced by superior effluent quality.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1452
Author(s):  
Hodon Ryu ◽  
Yao Addor ◽  
Nichole E. Brinkman ◽  
Michael W. Ware ◽  
Laura Boczek ◽  
...  

Facing challenges in water demands and population size, particularly in the water-scarce regions in the United States, the reuse of treated municipal wastewater has become a viable potential to relieve the ever-increasing demands of providing water for (non-)potable use. The objectives of this study were to assess microbial quality of reclaimed water and to investigate treatability of microorganisms during different treatment processes. Raw and final treated effluent samples from three participating utilities were collected monthly for 16 months and analyzed for various microbial pathogens and fecal indicator organisms. Results revealed that the detectable levels of microbial pathogens tested were observed in the treated effluent samples from all participating utilities. Log10 reduction values (LRVs) of Cryptosporidium oocysts and Giardia cysts were at least two orders of magnitude lower than those of human adenovirus and all fecal indicator organisms except for aerobic endospores, which showed the lowest LRVs. The relatively higher LRV of the indicator organisms such as bacteriophages suggested that these microorganisms are not good candidates of viral indicators of human adenovirus during wastewater treatment processes. Overall, this study will assist municipalities considering the use of wastewater effluent as another source of drinking water by providing important data on the prevalence, occurrence, and reduction of waterborne pathogens in wastewater. More importantly, the results from this study will aid in building a richer microbial occurrence database that can be used towards evaluating reuse guidelines and disinfection practices for water reuse practices.


Sign in / Sign up

Export Citation Format

Share Document