scholarly journals Simulation of sizing of energy storage for off-grid decentralized wastewater treatment units: A case study in the Netherlands

2018 ◽  
Vol 13 (4) ◽  
pp. 771-779 ◽  
Author(s):  
Diego F. Quintero Pulido ◽  
Carlos M. Barreto ◽  
Marnix V. ten Kortenaar ◽  
Roberto R. Balda ◽  
Johann L. Hurink ◽  
...  

Abstract Constant energy supply for decentralized wastewater treatment plants (DWWTPs) is crucial in order to ensure its functionality and prevent contamination of rivers and human illnesses due to pollution. However, power blackouts are a common problem in rural areas, which can affect the reliability of wastewater treatment plants. This paper presents a simulation study of sizing of solar photovoltaics and Sea-Salt batteries for powering a DWWTP working in 100% off-grid mode. The analysis is performed for two different DWWTPs: a prototype membrane bioreactor (MBR) and a Bever III compact wastewater aerobic system. The study is performed using the simulation package DEMKit developed at the University of Twente in the Netherlands. Results show that a solar photovoltaic system of 15 kWp coupled with a 20 kWh Sea-Salt battery may provide 100% of the electricity necessary during summer and up to 75% during winter in the Netherlands for the Bever III. In the case of the MBR, a photovoltaic system of 30 kWp in combination with a Sea-Salt battery of 50 kWh meets 100% of the electricity needs during summer and up to 65% during the winter in the Netherlands. Furthermore, in order to power the DWWTPs during the months of low sunlight, the dimensions of the solar photovoltaic system and the Sea-Salt battery needs to be increased by a factor of three.

2018 ◽  
Vol 225 ◽  
pp. 04004
Author(s):  
Tan Dei Han ◽  
Mohamad Rosman M. Razif ◽  
Shaharin A. Sulaiman

Solar photovoltaic (PV) systems has the potential of supplying infinite electricity from renewable energy to rural areas around Malaysia. Various preterm failures happening frequently on the system lead to its drop in efficiency and breakdown. Lack of studies on the system in Malaysia hinders the development in terms of operation and maintenance. There is no proper documentation relevant to the premature failure of the system in Malaysia. The main objective of this project is to study the nature of premature failure of stand-alone solar photovoltaic system in Malaysia in order to improve the operation and maintenance of the system. The present study would provide reference for proper planning on operation and maintenance of the PV system. The study was conducted base on expert’s input and extensive literature survey. FMEA method and ISM approach are applied to analyze the data collected. Poor cooling system have the highest risk priority number. Poor workmanship is the least depending factor for premature failure to happen thus requires most attention. Highest driving force of premature failure is poor monitoring and maintenance. More focus should be given to these premature failure during the planning for operation and maintenance due to its severity and impact.


2016 ◽  
Vol 5 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Muhammad Izuan Fahmi Romli ◽  
Rajprasad Kumar Rajkumar ◽  
Wong Yee Wan ◽  
Chong Lee Wai ◽  
Roselina Arelhi ◽  
...  

Countries like Malaysia have more that 70% of its population living in rural areas. Majority of these rural areas lie in regions where most villages do not have grid connected electricity. Renewable energy using photovoltaic (PV) panels offers an alternative and cost efficient solution that exploits the yearlong abundance of sunlight available in countries like Malaysia. The main problem with PV systems is the high maintenance costs in replacing batteries every few years which makes PV systems unattractive for rural areas. A full scale PV system, developed in Semenyih Malaysia, aims to increase battery lifetime and reduce maintenance costs by incorporating supercapacitors. The system was developed in a life-sized cabin to mimic a rural home. A programmable load is used to test the system with the load profile of a typical rural household usage. Experimental and simulation results show that the supercapacitor bank is able to reduce the stress on the battery by absorbing peak current surges. Results also show that the system is able to maintain a high battery state of charge during the entire day.Article History: Received June 17th 2016; Received in revised form August 16th 2016; Accepted Sept 10th 2016; Available onlineHow to Cite This Article: Fahmi, M.I., Rajkumar, R.,  Wong, Y.W., Chong, L.W., Arelhi, R., and Isa, D. (2016) The Effectiveness of New Solar Photovoltaic System with Supercapacitor for Rural Areas. Int. Journal of Renewable Energy Development, 5(3), 249-257.http://dx.doi.org/10.14710/ijred.5.3.249-257


2020 ◽  
Vol 9 (2) ◽  
pp. 13-26
Author(s):  
Shantha Indrajith Hikkaduwa Liyanage ◽  
Fulufhelo Godfrey Netswera ◽  
Shivajyoti Pal ◽  
Isaac Nthomola

This study investigates 200 kWp roof-mounted solar photovoltaic system in a country where there is no legal, policy, and institutional framework to de-risk the solar energy market but present naturally conducive environment in the sun-drenched semi-arid country. The analysis of quantitative and qualitative data subject to interpretivist and positivist approaches paves the way to find out that the university, though created financial and environments values, has not addressed the risk associated with illiquid capital intensive investment and conventional financial metrics such as net present value, internal rate of return. Hence, it is recommended to manage the risk with four strategies including maintaining economic value added at 5% or more, leveraging the investment, and withdrawing a part of equity for reinvesting in diversified investment. The findings are significant for low carbon investors to identify opportunities and manage the risk in solar energy market. Energy engineers enable designing a system that meets the fundamentals of the business and environmental value.


Author(s):  
Haseeb Javed

The goal of this study is to provide a model and conceptual design for a prosumer campus microgrid that will help the university campus economically. The proposed model is based on solar PV installation at department rooftop for the campus of Muhammad Nawaz Sharif University of Engineering and Technology's in Multan, Pakistan. This study indicates that a 3,196-kW grid-connected solar photovoltaic system may generate enough electrical power to meet consumption, reducing grid reliance and minimizing energy from grid supply. This study also includes an economical and financial analysis of the proposed system based on various assumptions. PVSol Software was used to conduct a solar potential study and design of the site. Our study and analysis revealed that our suggested PV model can create 3,196.53 kWh of PV energy (DC), which is about 81.6 percent of the yearly consumption of our chosen site of 3,784.56 kWh.


Author(s):  
Hagar Alm El Din Mohamad ◽  
Mohey Hemdan ◽  
Ahmed Alm ElDin Bastawissi ◽  
Alm ElDin Mohamad Bastawissi ◽  
Hitesh Panchal ◽  
...  

Author(s):  
Shantha Indrajith Hikkaduwa Liyanage ◽  
Fulufhelo Godfrey Netswera ◽  
Shivajyoti Pal ◽  
Isaac Nthomola

This study investigates 200 kWp roof-mounted solar photovoltaic system in a country where there is no legal, policy, and institutional framework to de-risk the solar energy market but present naturally conducive environment in the sun-drenched semi-arid country. The analysis of quantitative and qualitative data subject to interpretivist and positivist approaches paves the way to find out that the university, though created financial and environments values, has not addressed the risk associated with illiquid capital intensive investment and conventional financial metrics such as net present value, internal rate of return. Hence, it is recommended to manage the risk with four strategies including maintaining economic value added at 5% or more, leveraging the investment, and withdrawing a part of equity for reinvesting in diversified investment. The findings are significant for low carbon investors to identify opportunities and manage the risk in solar energy market. Energy engineers enable designing a system that meets the fundamentals of the business and environmental value.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Abraham Hizkiel Nebey ◽  
Biniyam Zemene Taye ◽  
Tewodros Gera Workineh

The majority of the Ethiopian population lives in rural areas and uses wood for domestic energy consumption. Using wood and fuel for domestic uses accounts for deforestation and health problems, which is also dangerous for the environment. The Ethiopian government has been planning to generate power from available renewable resources around the community. Therefore, determining the water surface potential of energy harvesting with floating solar photovoltaic system by using geographic information system is used to support decision-makers to use high potential areas. To identify useable areas for floating solar photovoltaic, factors that affect the usability were identified and weighted by using Analytical Hierarchy Processes. Thus, weighted values and reclassified values were multiplied to do the final usability map of floating solar photovoltaic with ArcGIS software. Due to the improper location of floating solar photovoltaic, efficiency is dropped. Therefore, the objective of this study was to identify the most usable surface of water bodies in Amhara regional, state irrigation dams for generating electrical power. The usability of the water surface for floating solar photovoltaic power plant was 63.83%, 61.09%, and 57.20% of Angereb, Rib, and Koga irrigation dams, respectively. The majority of the usable areas were found in the middle of the water surface. Nature water surface is a key factor in generating solar energy; it affects the floating solar photovoltaic and irradiance coming to the solar photovoltaic panel surface.


1990 ◽  
Vol 22 (3-4) ◽  
pp. 291-298
Author(s):  
Frits A. Fastenau ◽  
Jaap H. J. M. van der Graaf ◽  
Gerard Martijnse

More than 95 % of the total housing stock in the Netherlands is connected to central sewerage systems and in most cases the wastewater is treated biologically. As connection to central sewerage systems has reached its economic limits, interest in on-site treatment of the domestic wastewater of the remaining premises is increasing. A large scale research programme into on-site wastewater treatment up to population equivalents of 200 persons has therefore been initiated by the Dutch Ministry of Housing, Physical Planning and Environment. Intensive field-research work did establish that the technological features of most on-site biological treatment systems were satisfactory. A large scale implementation of these systems is however obstructed in different extents by problems of an organisational, financial and/or juridical nature and management difficulties. At present research is carried out to identify these bottlenecks and to analyse possible solutions. Some preliminary results are given which involve the following ‘bottlenecks':-legislation: absence of co-ordination and absence of a definition of ‘surface water';-absence of subsidies;-ownership: divisions in task-setting of Municipalities and Waterboards; divisions involved with cost-sharing;-inspection; operational control and maintenance; organisation of management;-discharge permits;-pollution levy;-sludge disposal. Final decisions and practical elaboration of policies towards on-site treatment will have to be formulated in a broad discussion with all the authorities and interest groups involved.


Sign in / Sign up

Export Citation Format

Share Document