Ozone enhanced ceramic membrane filtration for wastewater recycling

2019 ◽  
Vol 14 (2) ◽  
pp. 331-340
Author(s):  
P. Spencer ◽  
S. Domingos ◽  
B. Edwards ◽  
D. Howes ◽  
H. Shorney-Darby ◽  
...  

Abstract The Water Corporation of Western Australia uses polymeric ultrafiltration (UF) membranes across a range of applications including surface waters with high natural organic matter (NOM), recycling of secondary treated wastewater and pre-treatment for seawater reverse osmosis (SWRO). These challenging raw water conditions require expensive chemical dosing and clean-in-place (CIP) regimes, high frequency of membrane replacement and reduced membrane life. The greater durability of ceramic membranes, with optimal ozone and coagulant dosing, offer a potential capital and operating advantage over polymeric UF membranes. The Water Corporation collaborated with PWN Technologies (PWNT) to establish a ceramic membrane pilot plant at the Beenyup Wastewater Treatment Plant (WWTP). Optimised performance of the pilot plant was established and compared with existing UF membranes treating secondary treated wastewater prior to reverse osmosis (RO) in an indirect potable wastewater recycling application. Findings show a sustainable flux rate of 150 L/m2/h is achievable with ceramic MF membranes while filtering secondary treated wastewater. Higher flux rates up to 250 L/m2/h have been tested and are possibly sustainable, however, other bottlenecks in the pilot plant (ozone generator capacity) prevented longer test runs at this flux. Comparable design flux rates for polymeric UF membranes are 50 L/m2/h.

2014 ◽  
Vol 14 (4) ◽  
pp. 532-539 ◽  
Author(s):  
Krzysztof P. Kowalski ◽  
Henrik T. Madsen ◽  
Erik G. Søgaard

Pilot plant investigations of sand and membrane filtration (microfiltration (MF)/ultrafiltration (UF)/nanofiltration (NF)/low pressure reverse osmosis (LPRO)) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing manganese and dissolved organic matter. The results indicate that combining aeration, sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance.


2003 ◽  
Vol 47 (10) ◽  
pp. 25-32
Author(s):  
P. Drillia ◽  
M. Kornaros ◽  
G. Lyberatos

The main aim of this work was to study the ability of an aerobically operated sequencing batch reactor (SBR) to effectively treat the wastewaters produced by a motor-oil reforming company. In fact, the most important goal was to substantially reduce the organic load of these wastewaters before their disposal to an open trench, since the currently installed wastewater treatment plant, that includes an API separator followed by physico-chemical pre-treatment and an oxidation ditch, has proved today to be completely inefficient. The wastewater to be treated was mainly composed of five different streams from various points of the motor-oil reforming plant (e.g. gas washing tanks, cooling pumps, used motor oils holding tanks, etc). The major problem faced in this work was the high organic load (about 12,000 mg COD/L) and the free and dissolved oil contained in the wastewater (around 6-7%). Moreover, two of the streams, contributing to the mixed wastewater up to 30%, were unable to sustain dissolved oxygen and unfortunately their mixing with the other three streams resulted in the same detrimental effect. Therefore, experiments were conducted using either three or all of the contributing streams. The mixed wastewater was fed to the reactor either untreated or pre-treated with ceramic membranes in order to exclude all the free and dissolved oil. The application of pre-treated wastewater with membranes to the SBR system resulted in 75.2% and 81.9% total and dissolved COD reduction, respectively.


2010 ◽  
Vol 5 (2) ◽  
Author(s):  
W.B.P. van den Broek ◽  
M.J. Boorsma ◽  
H. Huiting ◽  
M.G. Dusamos ◽  
S. van Agtmaal

Biofouling is the major fouling type occurring in reverse osmosis (RO) plants treating surface water or effluent from a waste water treatment plant. Severe biofouling can result in operational problems, higher energy and chemical consumption and premature membrane replacement. There are different methods to control biofouling. One method is removal of nutrients in the pre-treatment of the membrane filtration plant, another method is periodic removal of biofouling by chemical cleanings or the use of chemicals to prevent biological growth in the RO systems. In this paper the results of experiments with peracetic acid on three different full scale plants are presented. Two of the plants are operated by Evides Industriewater, the third one by Bètawater, a subsidiary company for industry water of Waterleidingmaatschappij Drenthe (WMD). One of the main outcomes is that biofouling can be controlled fully on reverse osmosis (RO) plants with the applied method with a peracetic acid based product (Divosan Activ). If the proper measures are taken to avoid oxidation damage due to transition metals, this method with the environmental friendly product results in a stable process and savings by a significantly reduced CIP interval.


2001 ◽  
Vol 43 (10) ◽  
pp. 225-232 ◽  
Author(s):  
C. Jarusutthirak ◽  
G. Amy

The reuse of treated wastewater to augment natural drinking water supplies is receiving serious consideration. Treatment of secondary and tertiary effluent by membrane filtration was investigated by assessing nanofiltration (NF) membrane and ultrafiltration (UF) membranes in bench-scale experiments. It was found that secondary and tertiary effluent contained high concentration of effluent organic matter (EfOM), contributing EfOM-related fouling. Flux decline and EfOM rejection tests were evaluated, using a dead-end stirred cell filtration unit. Surface charge and molecular weight cut-off (MWCO) of membranes were significant factors in membrane performance including permeability and EfOM-rejection.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2010 ◽  
Vol 10 (6) ◽  
pp. 961-968 ◽  
Author(s):  
J. E. Drewes ◽  
J. A. McDonald ◽  
T. Trinh ◽  
M. V. Storey ◽  
S. J. Khan

A pilot-scale plant was employed to validate the performance of a proposed full-scale advanced water treatment plant (AWTP) in Sydney, Australia. The primary aim of this study was to develop a chemical monitoring program that can demonstrate proper plant operation resulting in the removal of priority chemical constituents in the product water. The feed water quality to the pilot plant was tertiary-treated effluent from a wastewater treatment plant. The unit processes of the AWTP were comprised of an integrated membrane system (ultrafiltration, reverse osmosis) followed by final chlorination generating a water quality that does not present a source of human or environmental health concern. The chemical monitoring program was undertaken over 6 weeks during pilot plant operation and involved the quantitative analysis of pharmaceuticals and personal care products, steroidal hormones, industrial chemicals, pesticides, N-nitrosamines and halomethanes. The first phase consisted of baseline monitoring of target compounds to quantify influent concentrations in feed waters to the plant. This was followed by a period of validation monitoring utilising indicator chemicals and surrogate measures suitable to assess proper process performance at various stages of the AWTP. This effort was supported by challenge testing experiments to further validate removal of a series of indicator chemicals by reverse osmosis. This pilot-scale study demonstrated a simplified analytical approach that can be employed to assure proper operation of advanced water treatment processes and the absence of trace organic chemicals.


2016 ◽  
Vol 75 (2) ◽  
pp. 439-450 ◽  
Author(s):  
Asmaa Ali ◽  
Abdelkader Ahmed ◽  
Ali Gad

This study aims to investigate the ability of low cost ceramic membrane filtration in removing three common heavy metals namely; Pb2+, Cu2+, and Cd2+ from water media. The work includes manufacturing ceramic membranes with dimensions of 15 by 15 cm and 2 cm thickness. The membranes were made from low cost materials of local clay mixed with different sawdust percentages of 0.5%, 2.0%, and 5.0%. The used clay was characterized by X-ray diffraction (XRD) and X-ray fluorescence analysis. Aqueous solutions of heavy metals were prepared in the laboratory and filtered through the ceramic membranes. The influence of the main parameters such as pH, initial driving pressure head, and concentration of heavy metals on their removal efficiency by ceramic membranes was investigated. Water samples were collected before and after the filtration process and their heavy metal concentrations were determined by chemical analysis. Moreover, a microstructural analysis using scanning electronic microscope (SEM) was performed on ceramic membranes before and after the filtration process. The chemical analysis results showed high removal efficiency up to 99% for the concerned heavy metals. SEM images approved these results by showing adsorbed metal ions on sides of the internal pores of the ceramic membranes.


2004 ◽  
Vol 4 (1) ◽  
pp. 111-118 ◽  
Author(s):  
R. Lo ◽  
S.-L. Lo

Currently, most semi-conductor plants adopt the conventional chemical coagulation and sedimentation process to treat chemical mechanical polishing (CMP) wastewater. This treatment process consumes a large quantity of coagulants, and its optimum pH operation range is rather narrow. This treatment process produces huge amounts of sludge and is hard to operate due to the unstable characteristics of the abrasive slurry of CMP wastewater. The purpose of this research is to establish a pilot plant which consists of chemical pretreatment, ceramic membrane microfiltration, carbon filtration and reverse osmosis system, which will allow the reclamation of the CMP wastewater. Actual CMP wastewater was sampled and treated in the pilot plant. The results of the pilot tests demonstrated the viability of the treatment scheme and provided data for scale-up calculations. Cost per ton of CMP wastewater reclaimed was calculated using the operating data established, and compared with the conventional chemical coagulation and sedimentation process.


Sign in / Sign up

Export Citation Format

Share Document