scholarly journals Creation of a sustainable water resource through reclamation of municipal and industrial wastewater in the Gippsland Water Factory

2013 ◽  
Vol 3 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Glen T. Daigger ◽  
Andrew Hodgkinson ◽  
Simon Aquilina ◽  
Peter Burrowes

The Gippsland Water Factory (GWF) is being implemented to reclaim domestic and industrial (pulp and paper) wastewater to provide a reliable and sustainable industrial water supply, replacing the high quality raw water currently provided by Gippsland Water. A grassroots facility, the GWF will process domestic wastewater by preliminary treatment, primary sedimentation, membrane bioreactor (MBR) nutrient removal activated sludge, and reverse osmosis (RO). Domestic primary and waste activated sludge and industrial wastewater is treated in anaerobic reactors (ARs) (lagoons) prior to biological treatment via MBR. Significant H2S is produced in the ARs and is oxidized to elemental sulfur in the aerobic MBR by controlled oxidation. In Stage 2 of the GWF the industrial wastewater will be reclaimed using nanofiltration and RO. Extensive pilot testing supported design of the ARs and industrial MBR. Development of the GWF was based on multi-criteria analysis to create an innovative and sustainable solution. Innovative features in addition to those already mentioned include biological sulfur removal from the AR biogas and odor control which includes treatment of off-gases in the biological reactor followed by two-stage biological treatment.

2016 ◽  
Vol 6 (02) ◽  
Author(s):  
Andri Taufick Rizaluddin ◽  
Sri Purwati

As the effluent quality standards for industrial wastewater are becoming more stringent, it is important for the industry to improve their wastewater treatment efficiency. The research about potential of cellulase application in the activated sludge process has been done. Theoritically, the addition of cellulase was required to support the activity of microorganism on the activated sludge. Since cellulose is the major organic pollutant component in the wastewater, it was expected that cellulase addition could improve the performance of activated sludge process. The experiments were conducted in a continuous process and consisted of two treatments which were with and without activated sludge at about 2400 mg MLVSS/L. The variations in each treatment were the enzyme dosages of 0; 0.2; 0.5; and 0.7 unit/g COD, and the residence time of 4, 8, 12, and 24 hours. The experiment result showed that the addition of cellulase can increase COD and BOD reduction compared to the treatment without enzymes. The highest COD reduction increment was 7.9% at the enzyme dosage of 0.2 unit/g COD and the residence time of 4 hours, while the highest BOD reduction increment was 14.6% at the same enzyme dosage and residence time. In conclusion, celullase application can be combined with the activated sludge process which will be effective in the high load organic wastewater. ABSTRAKDengan semakin ketatnya baku mutu air limbah, peningkatan efisiensi dalam pengolahan limbah menjadi sangat penting bagi industri. Penelitian ini dilakukan untuk mengetahui potensi selulase dan pengaruh laju pembebanan pada efektifitas pengolahan air limbah kertas sistem lumpur aktif. Secara teori, penambahan selulase diperlukan untuk membantu aktivitas mikroorganisme lumpur aktif. Dengan adanya kandungan selulosa sebagai komponen utama pencemar organik dalam air limbah, penambahan selulase diharapkan dapat meningkatkan kinerja proses lumpur aktif. Percobaan dilakukan dengan proses kontinyu yang terdiri dari dua perlakuan, yaitu tanpa dan dengan lumpur aktif pada MLVSS sekitar 2400 mg/L. Variasi pada setiap perlakuan berupa variasi dosis selulase (0; 0,2; 0,5; dan 0,7 unit/g COD) dan variasi laju pembebanan dengan mengatur waktu tinggal 4, 8, 12, dan 24 jam. Hasil percobaan menunjukkan bahwa perlakuan lumpur aktif dengan penambahan selulase dapat menghasilkan peningkatan reduksi COD dan BOD bila dibandingkan perlakuan tanpa menggunakan selulase. Peningkatan reduksi COD tertinggi mencapai 7,9% dengan perlakuan selulase dosis 0,2 unit/g COD dan waktu tinggal 4 jam, sedangkan peningkatan reduksi BOD tertinggi mencapai 14,6%. Perlakuan selulase dapat dikombinasikan dengan proses lumpur aktif yang berjalan efektif pada waktu tinggal yang lebih singkat atau pada beban tinggi.Kata kunci: selulase, lumpur aktif, chemical oxygen demand, biological oxygen demand


2021 ◽  
Vol 9 (1) ◽  
pp. 3073-3081
Author(s):  
Mohamed Nabil Ali ◽  
Hanan A Fouad ◽  
Mohamed M Meky ◽  
Rehab M Elhefny

Due to the lack of freshwater resources in Egypt, cement wastewater treatment was performed to widen the range of the water used in irrigation to face the massive future water scarcity. In this study, integrated fixed-film activated sludge (IFAS) was used as a biological treatment method. A laboratory pilot was established as a simulation of the IFAS process. The scale-pilot consists of a primary sedimentation tank, an IFAS tank equipped with an air blower, and a final settling tank. Three experimental attempts were performed using 3 different bio-carriers. In the first trial, Luffa sponges were used as natural bio-carriers and polyurethane sponges (PU) as artificial bio-carriers in the second trial, in addition to a combination between Luffa and PU sponges as a hybrid bio-carrier in the third trial. After analyzing the physicochemical properties of wastewater at the national research center in Cairo, the removal efficiency of TSS (total suspended solids), COD (chemical oxygen demand) , BOD(biological oxygen demand), TN (total nitrogen), and TP (total phosphorous) was 94.5%, 87.8%, 90.8%, 75.9%, and 69.4%, respectively in case of using the combination between Luffa and PU sponges. It can be concluded that using IFAS process was effective for cement wastewater treatment and the effluent wastewater met the Egyptian code limitations for reuse in agriculture purposes.


2021 ◽  
Vol 264 ◽  
pp. 01055
Author(s):  
N.B. Egamberdiev ◽  
Zilola Sharipjonova ◽  
Bobur Nasibov ◽  
A.O. Khomidov ◽  
M.I. Alimova ◽  
...  

During the period of water shortage in the Republic, modern resource-saving irrigation methods and the use of purified and industrial waters and their reuse in irrigation is an urgent problem in ecology. Among the methods for treating industrial wastewater in a cheaper, cost effective way is the biological treatment method. It is the study of the effectiveness of biological treatment of industrial wastewater from primary winemaking using selected strains of aquatic plants (pistia). The object of wastewater research is selecting a Pistia algae strain, carrying out biochemical, hydrochemical analyses of wastewater before and after treatment, and the chemical composition of the Pistia algae biomass. All studies were carried out according to the standard studies of UzGOST for waste and drinking water and algological methods used by the Institute of Botany of ANRUz, State Enterprise "Institute GIDROINGEO", etc. The efficiency of biological purification of wastewaters of primary winemaking by higher aquatic plants of the pistia was established. With the help of the research carried out, the wastewater treatment of the food plant, in particular, the Kibray wine station with the Pistia algae, was established: the optimal parameters of growth, development and purification capacity of pistia algae were established for various variants of experiments and wastewater samples; designed and assembled a semi-industrial plant for biological wastewater treatment of the Kibray wine station and carried out work on industrial wastewater treatment. Wastewater from the Kibray wine station contains organic compounds, namely yeast sediments, proteins, fats, carbohydrates, fiber, which are food for Pistia algae. Pistia biomass obtained after cultivation in wastewater after sterilization can be used as feed in livestock and poultry farming, as it contains a large number of proteins, fats and carbohydrates.


1975 ◽  
Vol 10 (1) ◽  
pp. 164-169
Author(s):  
R.G. Rosehart ◽  
R. Chu ◽  
R. Breeze

Abstract An activated sludge pilot plant has been operated on a feed consisting of mixtures of domestic and starch plant wastes. The effects of the industrial waste addition on the performance of the biological treatment system have been monitored. Results indicate that the optimal plant performance is obtained with a 1% (V/V) starch waste addition to domestic sewage. It was observed that the addition of the starch plant effluent improved the efficiency of BOD5 removal and also improved settling characteristics of the activated sludge. A shock loading did not affect the plant performance. The results of the study indicate that it is feasible to combine the treatment of municipal sewage and wheat starch waste in a biological treatment process.


2016 ◽  
Vol 8 (15) ◽  
pp. 37-47
Author(s):  
Sri Moertinah ◽  
Misbachul Moenir

This study aims to create a pilot project for wastewater treatment wig industry with biological activated sludge technology to applied in the industry. Design criteria for the pilot project are the influent COD ≤ 900 mg/l, MLSS = 3,000 mg/l, 30-hours residence time. DO ≥ 2 mg/l and flow 10 m3/day. Implementation of a pilot project initiated by seeding aerobic microbes and microbial adaptation to proceed with wastewater to be treated. The trial results showed that the pilot project % COD reduction ranged from 73.2% - 91% and the result is not much different from the results of laboratory-scale research about 89.7% and the quality  of the effluent is already fullfill the standard of industrial waste water wig required by the Central Java Provincial Regulation No. 5 of 2012. The calculation of operating cost of activated sludge biological treatment which includes labor costs, electricity costs, equipment maintenance costs, expenses and other nutrients obtained the price of  Rp. 2972/m3 or Rp. 742.99/wig.ABSTRAKPenelitian ini bertujuan untuk membuat pilot project pengolahan air limbah industri rambut palsu dengan sistem lumpur aktif yang diterapkan di industri. Kriteria desain pilot project tersebut adalah COD influen ≤ 900 mg/l, MLSS = 3.000 mg/l, waktu tinggal 30 jam DO≥2 mg/l  dan debit air limbah 10 m3/hari. Pelaksanaan pilot project dimulai dengan seeding mikroba aerob dan dilanjutkan dengan adaptasi mikroba dengan air limbah yang akan diolah. Hasil uji coba pilot project menunjukkan bahwa % penurunan COD berkisar antara 73,2% - 91% dan hasil ini tidak berbeda jauh dengan hasil penelitian skala laboratorium sekitar 89,7% dan kualitas air limbah hasil pengolahan sudah memenuhi baku mutu air limbah industri rambut palsu yang dipersyaratkan oleh Peraturan Daerah Provinsi Jawa Tengah No 5 tahun 2012. Dari hasil perhitungan biaya operasional pengolahan biologis lumpur aktif yang meliputi biaya tenaga kerja, biaya listrik, biaya perawatan peralatan, biaya nutrien dan lainnya diperoleh harga sebesar Rp. 2972/m3  atau Rp. 742,99/wig.   Kata kunci : air limbah industri rambut palsu, pilot project, sistem lumpur aktif


2012 ◽  
Vol 11 (2) ◽  
pp. 435-438 ◽  
Author(s):  
Viktoria Pitas ◽  
Bence Fazekas ◽  
Zsuzsanna Banyai ◽  
Karoly Reich ◽  
Krisztian Varga ◽  
...  

1991 ◽  
Vol 24 (5) ◽  
pp. 233-240 ◽  
Author(s):  
Nik Fuaad Nik Abllah ◽  
Aik Heng Lee

A laboratory study was conducted to determine the feasibility of batch activated sludge reactor for treating pineapple wastewater and to examine the effects of bioaugmentation on treatment performance. The experimental set-up consists of eleven batch reactors. Activated sludge obtained from a wastewater treatment plant treating domestic wastewater was used as seed for the reactors. Synthetic pineapple wastewater was used as feed for the reactors. The eleven reactors were arranged to evaluate the total organic removal, nitrification, and sludge production by bioaugmentation process. Three major factors considered were influent organic loading, ammonia-nitrogen, and dosage of bacterial-culture-product addition. Removal of TOG (total organic carbon), sludge production in terms of SS(suspended solids), and ammonia-nitrogen removal variation are used as evaluation parameters. The TOC removal efficiency after the end of a 48 hour reactor run, for influent TOC of 350.14 to 363.30 mg/l, and 145.92 to 169.66 mg/l, was 94.41 to 95.89%, and 93.72 to 94.73% respectively. Higher organic removal was observed in the bioaugmented reactors with higher organic loading. The better organic removal efficiency in the bioaugmented reactors was probably due to activities of bacteria added. The test results also indicated that sludge yield was enhanced by the bacteria additive and high bacteria dosage produced less sludge. Bioaugmentation was observed to be a suitable alternative for enhancing the biological treatment of pineapple wastewater.


Chemosphere ◽  
2021 ◽  
pp. 131101
Author(s):  
Dinh T. Nga ◽  
Nguyen T. Hiep ◽  
Arvind Kumar Mungray ◽  
La Duc Duong ◽  
Phuong Nguyen-Tri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document