scholarly journals Biological treatment of industrial and domestic wastewater of a brewery in Uzbekistan

2021 ◽  
Vol 264 ◽  
pp. 01055
Author(s):  
N.B. Egamberdiev ◽  
Zilola Sharipjonova ◽  
Bobur Nasibov ◽  
A.O. Khomidov ◽  
M.I. Alimova ◽  
...  

During the period of water shortage in the Republic, modern resource-saving irrigation methods and the use of purified and industrial waters and their reuse in irrigation is an urgent problem in ecology. Among the methods for treating industrial wastewater in a cheaper, cost effective way is the biological treatment method. It is the study of the effectiveness of biological treatment of industrial wastewater from primary winemaking using selected strains of aquatic plants (pistia). The object of wastewater research is selecting a Pistia algae strain, carrying out biochemical, hydrochemical analyses of wastewater before and after treatment, and the chemical composition of the Pistia algae biomass. All studies were carried out according to the standard studies of UzGOST for waste and drinking water and algological methods used by the Institute of Botany of ANRUz, State Enterprise "Institute GIDROINGEO", etc. The efficiency of biological purification of wastewaters of primary winemaking by higher aquatic plants of the pistia was established. With the help of the research carried out, the wastewater treatment of the food plant, in particular, the Kibray wine station with the Pistia algae, was established: the optimal parameters of growth, development and purification capacity of pistia algae were established for various variants of experiments and wastewater samples; designed and assembled a semi-industrial plant for biological wastewater treatment of the Kibray wine station and carried out work on industrial wastewater treatment. Wastewater from the Kibray wine station contains organic compounds, namely yeast sediments, proteins, fats, carbohydrates, fiber, which are food for Pistia algae. Pistia biomass obtained after cultivation in wastewater after sterilization can be used as feed in livestock and poultry farming, as it contains a large number of proteins, fats and carbohydrates.

2020 ◽  
pp. 559-587
Author(s):  
David de la Varga ◽  
Manuel Soto ◽  
Carlos Alberto Arias ◽  
Dion van Oirschot ◽  
Rene Kilian ◽  
...  

Constructed Wetlands (CWs) are low-cost and sustainable systems for wastewater treatment. Traditionally they have been used for urban and domestic wastewater treatment, but in the last two decades, the applications for industrial wastewater treatment increased due to the evolution of the technology and the extended research on the field. Nowadays, CWs have been applied to the treatment of different kind of wastewaters as such as refinery and petrochemical industry effluents, food industry effluents including abattoir, dairy, meat, fruit and vegetables processing industries, distillery and winery effluents, pulp and paper, textile, tannery, aquaculture, steel and mixed industrial effluents. In this chapter, the authors present the main types of CWs, explain how they work and the expected performances, and describe the principal applications of CWs for industrial wastewater treatment with particular attention to suspended solids, organic matter and nutrient removal. A review of these applications as well as some case studies will be discussed.


2018 ◽  
Vol 22 (6) ◽  
pp. 20-25 ◽  
Author(s):  
I.Yu. Shlekova ◽  
A.I. Knysh

The use of industrial wastes as alternative adsorbents for wastewater treatment is proposed. The effective concentration of the adsorbent was determined experimentally. The results of a study of the intensification of biological wastewater treatment using activated carbon and a pulverized coke fraction are presented. The efficiency of treatment in terms of "chemical oxygen demand" during the intake of highly concentrated sewage sludge with the use of an alternative adsorbent averaged 85 %. In the biosorption system, the conservation of the species diversity of the biocenosis of activated sludge and its purifying ability was noted. In the biological treatment system, purification efficiency was recorded on average 16 % less and destabilization of the system as a whole. The carried out researches prove expediency of use of adsorbents, including production wastes, for intensification of biological wastewater treatment in aero tanks.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 161-167 ◽  
Author(s):  
A. Norström ◽  
K. Larsdotter ◽  
L. Gumaelius ◽  
J. la Cour Jansen ◽  
G. Dalhammar

A treatment plant using conventional biological treatment combined with hydroponics and microalgae is constructed in a greenhouse in the area of Stockholm, Sweden. The treatment plant is built for research purposes and presently treats 0.559 m3 of domestic wastewater from the surrounding area per day. The system uses anoxic pre-denitrification followed by aerobic tanks for nitrification and plant growth. A microalgal step further reduces phosphorus, and a final sand filter polishes the water. During a three week period in July 2002 the treatment capacity of this system was evaluated with respect to removal of organic matter, phosphorus and nitrogen. 90% COD removal was obtained early in the system. Nitrification and denitrification was well established with total nitrogen reduction of 72%. Phosphorus was removed by 47% in the process. However, higher phosphorus removal values are expected as the microalgal step will be further developed. The results show that acceptable treatment can be achieved using this kind of system. Further optimisation of the system will lead to clean water as well as valuable plants to be harvested from the nutrient rich wastewater.


2018 ◽  
Vol 251 ◽  
pp. 03029 ◽  
Author(s):  
Tran Ha Quan ◽  
Elena Gogina ◽  
Tran Van Quang

All around the world, activated sludge is the classical and traditional biological wastewater treatment for municipal and industrial wastewater. With the development of social and technology, the concentration of pollutants has been increased, so the performance of the old wastewater treatment plants not guaranteed. Therefore, upgrade and reconstruction wastewater treatment system becomes the main task of protection environment, especially in the developing countries. Application biofilms in process biological wastewater treatment is one of technology method and it has many advantages. In the Sequencing Batch Reactor, the Mutag BioChip 25TM provides to the bacteria an optimal habitat at the surface area, increasing rate of Utilization of Substrates 20 – 30% and efficiency of organic matter removal from 10 – 15%.


2014 ◽  
Vol 70 (2) ◽  
pp. 279-288 ◽  
Author(s):  
Asun Larrea ◽  
Andre Rambor ◽  
Malcolm Fabiyi

The use of membrane bioreactors (MBRs) in activated sludge wastewater treatment has grown significantly in the last decade. While there is growing awareness and knowledge about the application of MBR technology in municipal wastewater treatment, not much information is available on the application of MBRs in industrial wastewater treatment. A comparative study of design data, operating conditions and the major challenges associated with MBR operations in 24 MBR plants treating both municipal and industrial wastewater, built by and/or operated by Praxair, Inc., is presented. Of the 24 MBR systems described, 12 of the plants used high purity oxygen (HPO). By enabling a wide range of food/microorganism ratios and loading conditions in the same system, HPO MBR systems can extend the options available to industrial plant operators to meet the challenges of wide fluctuations in organic loading and footprint limitations. While fouling in industrial MBR systems can be an issue, adequate flux and permeability values can be reliably maintained by the use of good maintenance strategies and effective process controls (pretreatment, cleaning and membrane autopsies).


2021 ◽  
Vol 9 (1) ◽  
pp. 3073-3081
Author(s):  
Mohamed Nabil Ali ◽  
Hanan A Fouad ◽  
Mohamed M Meky ◽  
Rehab M Elhefny

Due to the lack of freshwater resources in Egypt, cement wastewater treatment was performed to widen the range of the water used in irrigation to face the massive future water scarcity. In this study, integrated fixed-film activated sludge (IFAS) was used as a biological treatment method. A laboratory pilot was established as a simulation of the IFAS process. The scale-pilot consists of a primary sedimentation tank, an IFAS tank equipped with an air blower, and a final settling tank. Three experimental attempts were performed using 3 different bio-carriers. In the first trial, Luffa sponges were used as natural bio-carriers and polyurethane sponges (PU) as artificial bio-carriers in the second trial, in addition to a combination between Luffa and PU sponges as a hybrid bio-carrier in the third trial. After analyzing the physicochemical properties of wastewater at the national research center in Cairo, the removal efficiency of TSS (total suspended solids), COD (chemical oxygen demand) , BOD(biological oxygen demand), TN (total nitrogen), and TP (total phosphorous) was 94.5%, 87.8%, 90.8%, 75.9%, and 69.4%, respectively in case of using the combination between Luffa and PU sponges. It can be concluded that using IFAS process was effective for cement wastewater treatment and the effluent wastewater met the Egyptian code limitations for reuse in agriculture purposes.


Sign in / Sign up

Export Citation Format

Share Document