scholarly journals Sorption of metaldehyde using granular activated carbon

2016 ◽  
Vol 7 (3) ◽  
pp. 280-287 ◽  
Author(s):  
S. Salvestrini ◽  
P. Vanore ◽  
A. Bogush ◽  
S. Mayadevi ◽  
L. C. Campos

In this work, the ability of granular activated carbon (GAC) to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

Author(s):  
Abdelkader Ouakouak ◽  
Leila Youcef ◽  
Djihad Boulanouar ◽  
Samia Achour

The objective of this work is to study the phosphate adsorption from natural waters by using a granular activated carbon (GAC). Experiments were carried out with synthetic solutions of phosphate prepared using groundwater (mineralized drinking water). Batch tests were carried out in order to study different operating parameters such as the effect of contact time, pH, initial phosphate concentration and adsorbent dosage. In addition, the adsorption kinetic data were simulated using the pseudo first order, the pseudo second-order and the intra-particle diffusion model. The sorption equilibrium was analyzed by Langmuir, Freundlich and Dubinin–Radushkevich isotherms model. Results show that the phosphate adsorption was reversible and the quantity adsorbed reached its maximum value (2.82 mg/g) after 30 min. It was also found that phosphate uptake was affected by variation of pH, initial concentration of phosphate and granular activated carbon dosage. The adsorption improved with increase in pH values, initial concentration and adsorbent dosage. The results of kinetic studies revealed that pseudo-second-order model adequately described the adsorption phosphate on GAC and the intra-particle diffusion involved in the adsorption mechanism. Also, isotherm study showed that Langmuir isotherm best fit the data and the adsorption was a physical type.


2017 ◽  
Vol 68 (3) ◽  
pp. 496-499
Author(s):  
Mihaela Neagu ◽  
Daniela Roxana Popovici ◽  
Loredana Elena Vijan ◽  
Catalina Calin

In this work, the adsorption mechanism of p-cresol from aqueous solution onto mesoporous activated carbon was investigated. The mechanism of the adsorption process was determined from Weber-Morris and Boyd models. By graphical and statistical analysis was demonstrated that both film-diffusion and intra-particle diffusion are concurrent in adsorption mechanism. The adsorption mechanism of p-cresol onto mesoporous activated carbon was sustained by FTIR analysis, Boehm titration and the point of zero charge of the GAC.


2013 ◽  
Vol 8 (3) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mahjoub Jabli ◽  
Faouzi Aloui ◽  
Béchir Ben Hassine

Considered as ligands due to the presence of donor atoms in their chemical structures, and being also among the major pollutants of water, Eriochrome Black B (Erio), Calmagite (Calma) and Acid Blue 25 (AB25) were successfully immobilized on cellulose-chitosan microspheres loaded with copper ions. Prepared supports were characterized by Fourier Transform Infra-Red (FTIR) spectral study and Thermogravimetic analysis (TGA). The effect of experimental factors during dye immobilization such as pH, contact time, temperature, and initial dye concentration were studied. The experiments demonstrate that the adsorption capacities of dyes on [Cu(II)/cellulose-chitosan] are much higher than the unloaded microspheres. This indicates that these dyes can act as efficient ligands for coordinating metals already involved in [cellulose-chitosan]. At least, in the case of AB25, a 60% of difference in target removal was achieved at equilibrium. The kinetic adsorption fitted well to the intra-particle diffusion model and the corresponding rate constants were obtained. In addition, the interpretation of the equilibrium sorption data complies well with the Freundlich model. The thermodynamic parameters were also determined and the enthalpy change (ΔH&Deg;) was found to be low, between −5.93 and −20.68 Kj.mol-1, indicating that the adsorption phenomenon is exothermic and physical. A probable mechanism of the Dye/Copper(II)/cellulose-chitosan complex is also proposed.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
Mahjoub Jabli ◽  
Faouzi Aloui ◽  
Béchir Ben Hassine

Considered as ligands due to the presence of donor atoms in their chemical structures, and being also among the major pollutants of water, Eriochrome Black B (Erio), Calmagite (Calma) and Acid Blue 25 (AB25) were successfully immobilized on cellulose-chitosan microspheres loaded with copper ions. Prepared supports were characterized by Fourier Transform Infra-Red (FTIR) spectral study and Thermogravimetic analysis (TGA). The effect of experimental factors during dye immobilization such as pH, contact time, temperature, and initial dye concentration were studied. The experiments demonstrate that the adsorption capacities of dyes on [Cu(II)/cellulose-chitosan] are much higher than the unloaded microspheres. This indicates that these dyes can act as efficient ligands for coordinating metals already involved in [cellulose-chitosan]. At least, in the case of AB25, a 60% of difference in target removal was achieved at equilibrium. The kinetic adsorption fitted well to the intra-particle diffusion model and the corresponding rate constants were obtained. In addition, the interpretation of the equilibrium sorption data complies well with the Freundlich model. The thermodynamic parameters were also determined and the enthalpy change (ΔH°) was found to be low, between −5.93 and −20.68 Kj.mol-1, indicating that the adsorption phenomenon is exothermic and physical. A probable mechanism of the Dye/Copper(II)/cellulose-chitosan complex is also proposed.


2012 ◽  
Vol 1373 ◽  
Author(s):  
Teresa Ramírez-Rodríguez ◽  
Fray de Landa Castillo-Alvarado

ABSTRACTThe intra-particle diffusion model (IPD), proposed by Weber and Morris has been applied to the analysis of the kinetics of adsorption on activated carbon fibers with phosphate groups in the removal of cadmium ions in aqueous media. It is evident that the removal of cadmium ion kinetic model of pseudo-second order provides a better fit than the model of pseudo-first order and the intra-particle diffusion model provides the best to the sample compared activating solution: grams fibers of 1:3.


2021 ◽  
Author(s):  
Tamara Dudnikova ◽  
Tatiana Minkina ◽  
Galina Vasilyeva ◽  
Tatiana Bauer ◽  
Anatoly Barakhov ◽  
...  

<p>Benzo[a]pyrene (BaP) is one of the most dangerous polycyclic aromatic hydrocarbon, highly persistent and toxic and its remediation by the cost-effective adsorbents are of great importance. Although various technologies have been developed to remove BaP from the environment, its sorption through solid matrixes has received increasing attention due to cost-effectiveness. Studies regarding the absorption of PAHs by soil matrix have been focused mostly on non-carcinogenic compounds comprising two or three aromatic rings, such as naphthalene and phenanthrene. However, the BaP absorption by the soil matrix and different adsorbents is not yet well explored. The present research investigates the adsorption capacity of Haplic Chernozem, granular activated carbon and biochar in relation to BaP. The Haplic Chernozem properties has following properties : clay particles content was 53.1% for particles with diameter < 0.01 mm and 32.4% for particles < 0.001 mm; pHH2O - 7.3; Corg - 129 3.7%; CaСО3 - 0.1%; exchangeable cations Ca2+ - 31.0 and Mg2+ - 4.5 cmol(+) kg−1; cation exchange capacity (CEC) - 37.1 cmol(+) kg−1. Laboratory experiments with different initial BaP concentrations in the liquid phase, and different rations of both solid and liquid phases, show that Freundlich model describes well the adsorption isotherms of BaP by the soil and both adsorbents. Moreover, the BaP isotherm sorption by the Haplic Chernozem is better illustrated by the Freundlich model than the Langmuir equation. The results reveal that the sorption capacity of the carbonaceous adsorbents at a ratio 1:20 is orders of magnitude higher (13368 ng mL<sup>-1</sup> of activated carbon and 3578 ng mL<sup>-1</sup> of biochar) than that of the soil (57.8 ng mL<sup>-1</sup>). The difference of the sorption capacity of the carbonaceous adsorbents and soil at a ratio 0.5:20 were 17-45 times. This is due to the higher pore volume and specific surface area of the carbonaceous adsorbents than soil particles, assessed through scanning electron microscopy. The results of sorption kinetics showed high sorption rates and achievement of sorption equilibrium after 1 h. Biochar adsorbed BaP more intensely than granular activated carbon. The sorption kinetic of  BaP by chernozem was compared with the adsorption kinetics by the carbonaceous adsorbents. Results indicate that the adsorption dynamic involves two steps. The first one is associated with a fast BaP adsorption on the large available surface and inside macro- and mesopores of the sorbent particles of the granular activated carbon and biochar. Then, the adsorption is followed by a slower process of BaP penetration into the microporous space, and/or redistribution into a hydrophobic fraction. Overall, the granular activated carbon and biochar are highly effective adsorbents for BaP, whereas the Haplic Chernozem has a rather limited capacity to remove BaP from contaminated solutions.  </p><p>The research was supported by RFBR, projects no. 19-29-05265 and 19-34-90185.</p>


Author(s):  
Chukwunonso Chukwuzuloke Okoye ◽  
Okechukwu Dominic Onukwuli ◽  
Chinenye Faith Okey- Onyesolu ◽  
Ifeoma Amaoge Obiora- Okafo

Remediation of crystal violet (CV) dye aqueous solution was attempted using acid activated raphia hookeri seeds (AARHS) as adsorbent. Adsorption equilibrium and kinetics of CV dye uptake onto AARHS were examined in series of experimental runs, and effects of contact time and initial CV dye concentrations were investigated at different solution temperatures (303 K, 313 K and 323 K). Equilibrium and kinetic data modeling of the adsorption process was performed using selected theoretical methods. Four different forms of Langmuir (type I, II, III and IV) and Freundlich isotherms were considered for fitting the equilibrium data while zero order, first order, pseudo-first order (PFO), second order, types I, II, III and IV pseudo-second order (PSO) and intra-particle diffusion models were selected to describe the kinetics of the adsorption process. Error functions including coefficient of determination (R2), root mean square error (RMSE), chi square (χ2) and average relative error (ARE) were employed to reveal model of best fit. Results obtained from error value computations show that the equilibrium data best followed Freundlich isotherm, which indicates multilayer adsorption of CV dye onto AARHS. The calculated Freundlich’s adsorption intensity values at different temperatures reveal the favourability of the adsorption process. PSO type I, II and IV best fitted the kinetic data compared to other investigated models. Intra-particle diffusion plots depict that the adsorption process of CV dye onto AARHS is a two-step process and also, intra-particle diffusion is not the only rate-limiting step.


2011 ◽  
Vol 63 (10) ◽  
pp. 2114-2122 ◽  
Author(s):  
Lei Zhang ◽  
Qing Lin ◽  
Xingjia Guo ◽  
Francis Verpoort

Florisil was employed for the sorption of antimony ions from aqueous solutions. A detailed study of the process was performed by varying the sorption time, pH, and temperature. The sorption was found to be fast, equilibrium was reached within 15 min. Moreover, a maximum sorption has been achieved from solution when the pH ranges between 1–10. From kinetic experiments it follows that the process correlate with the second-order kinetic model. The overall rate process appears to be influenced by both boundary layer diffusion and intra-particle diffusion. The Langmuir and Dubinin-Radushkevich (D-R) type sorption isotherms can be applied to fit and interpret the sorption data. The mean energy of adsorption (9.73 kJ mol−1) was calculated from the Dubinin-Radushkevich (D-R) adsorption isotherm at room temperature. Furthermore, the thermodynamic parameters for the sorption were also determined, and the ΔH0 and ΔG0 values indicate a spontaneous endothermic behavior.


2017 ◽  
Vol 76 (8) ◽  
pp. 2213-2221 ◽  
Author(s):  
Nuhu Dalhat Mu'azu ◽  
Mohammed Hussain Essa ◽  
Salihu Lukman

Multicomponent adsorption of Cd, Cr, Cu, Pb and Zn onto date palm pits based granular activated carbon (GAC) augmented with highly active natural clay at different proportion was investigated. The effects of the initial pH and the adsorbents mixed ratio on the removal selectivity sequence of the metals evaluated. Batch adsorption experiments were undertaken at initial pH 2, 6 and 12. At initial pH 2, both the percent removal and the metals adsorptive capacity decreased with increasing GAC to clay ratio (from 0 to 1) with the percentage removal of Cd, Zn and Cr ions dropping from 68, 81, 100% to 43, 57 and 70%, respectively. At both pH 6 and 12, the percentage removals and adsorption capacities of all the heavy metal ions are higher than at pH 2. Selectivity sequences for pH 2, 6 and 12 followed the order Pb > Cr > Cu > Zn > Cd; Pb > Cr > Cu > Cd > Zn and Cd > Cr > Cu > Pb > Zn, respectively. The adsorption trends were analyzed in relation to point of zero charge and ξ-potential and the metals ions speciation at different pH. These results will help better understand the feasibility of augmenting GAC with natural clay minerals during fixed bed column test which is more beneficial for practical industrial applications.


Sign in / Sign up

Export Citation Format

Share Document