scholarly journals Setting water quality criteria for agricultural water reuse purposes

2016 ◽  
Vol 7 (2) ◽  
pp. 121-135 ◽  
Author(s):  
K. Müller ◽  
P. Cornel

The use of reclaimed water for agricultural irrigation is practiced worldwide and will increase in the future. The definition of water quality limits is a useful instrument for the assessment of water quality regarding its suitability for irrigation purposes and the performance of wastewater treatment steps. This study elaborates water quality objectives for a water reuse project in a setting where national guidelines do not exist. Internationally established guidelines are therefore applied to the local context. Additional limits for turbidity, total suspended solids, biochemical and chemical oxygen demand, total phosphorus and potassium are suggested to meet the requirements of water reuse projects. Emphasis is put on water quality requirements prior to UV disinfection and nutrient requirements of cultivated crops. The presented values can be of assistance when monitoring reclaimed water quality. To facilitate the realization of water reuse projects, comprehensive and more detailed information, in particular on water quality requirements prior to disinfection steps, should be provided as well as regarding the protection of the irrigation infrastructure.

2019 ◽  
Vol 172 ◽  
pp. 616-629 ◽  
Author(s):  
Channah M. Rock ◽  
Natalie Brassill ◽  
Jessica L. Dery ◽  
Dametreea Carr ◽  
Jean E. McLain ◽  
...  

1991 ◽  
Vol 24 (9) ◽  
pp. 109-121 ◽  
Author(s):  
James Crook

The applicability of reclaimed water for any particular use depends on its physical, chemical, and microbiological quality. The effects of physical and chemical parameters for nonpotable uses of reclaimed water are, for the most part, well understood and criteria have been established. Health-related microbiological limits are more difficult to quantify, as evidenced by widely varying standards and guidelines throughout the world. This paper presents existing reclaimed water quality limits for various uses, and compares the California Wastewater Reclamation Criteria, which are typical of health-related standards in industrialized countries, to WHO guidelines, which are directed principally at developing countries. The California regulations are considerably more restrictive than the WHO guidelines. Because of unknowns concerning the presence, identification, concentration, and health significance of many chemical constituents that may be in reclaimed water, quality criteria for potable reuse are not well developed and are not addressed in this paper.


2021 ◽  
Vol 13 (10) ◽  
pp. 5738
Author(s):  
ElSayed ElBastamy ◽  
Lubna A. Ibrahim ◽  
Atef Ghandour ◽  
Martina Zelenakova ◽  
Zuzana Vranayova ◽  
...  

This project investigated the relative efficiencies of three pilot-scale constructed columns for enhancing drainage wastewater treatment processes to ensure compliance with Egyptian and international water quality criteria. In this investigation, basic materials (sand and gravel) and variable natural clay minerals zeolite (Z), diatomite (D) and bentonite (B) were utilized as packing materials to build up a Z column (ZC), D column (DC) and B column (BC), respectively. The three columns’ ability to remove pollutants from waste water for re-use in irrigation was investigated throughout one year (12 trials). The results revealed that the influent water had 211 mg/L total suspended solids, 6.09 mg/L total nitrogen, 36.67 mg/L biochemical oxygen demand, 56 mg/L chemical oxygen demand, 1700 mg/L total dissolved solids, 0.97 mg/L copper (Cu2+), 1.12 mg/L iron (Fe2+), 1.07 mg/L manganese (Mn2+), 1.02 mg/L lead (Pb2+), 1.05 mg/L zinc (Zn2+), and 46 × 103 CFU/mL fecal coliforms. These parameters were higher than the values permitted by Egyptian and international licenses. The range of removal efficiency of these pollutants by ZC was 96–21%, by BC was 99–29.8%, and by DC was 99–19.80%. Regeneration studies for the spent adsorbents demonstrated that the percentages of pollutant removal were sufficiently high. The treated effluent produced by the three columns was suitable for irrigation purposes, especially at a contact time of four hours, with the order for column treatment efficiency being BC ˃ DC ˃ ZC. Treated water was classified for irrigation suitability according to the Agrifood Water Quality Index (AFWQI) as marginal from the ZC, very good from the DC, and excellent from the BC. Treatment of such drainage water using the BC and DC appears feasible, because the process is easily operated and leads to final treated effluent of high quality for agricultural uses. The economic cost also confirms the feasibility of this treatment.


2021 ◽  
Vol 1 (42) ◽  
pp. 78-85
Author(s):  
Giao Thanh Nguyen

Water quality is critical for a healthy ecosystem, this study was conducted to evaluate the surface water quality in lakes in An Giang Province from 2017 to 2019. Water quality was assessed using variables of temperature, pH, dissolved oxygen (DO), total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD), nitrate (NO3- - N), phosphate (PO3 4- - P ), ammonia (NH+ 4 - N), and coliforms at nine locationsbelonging to seven reservoirs including O Tuk Sa, Thuy Liem, Soai So, Soai Chek, O Thum, O Ta Soc, and Bung Binh Thien. Water quality criteria were assessed according to the National Technical Regulation on Surface Water Quality (QCVN 08-MT: 2015/BTNMT). Cluster analysis (CA) and principal component analysis (PCA)were applied to group water quality to identify the main parameters affecting water quality in the reservoirs. The findings indicated that the water quality in the reservoirs were polluted by TSS, organic matters (DO was low, while COD and BOD were high), and microorganisms (coliforms). The PCA analysis showed that the watervariables including temperature, pH, DO, TSS, COD, BOD, NO3- - N, PO3 4- - P , NO3- - N, and coliforms significantly influenced the surface of the water in the reservoirs. It is necessary to investigate pollution sources to propose appropriate solutions to treat and maintain the water quality in the reservoirs of An Giang Province .


2002 ◽  
Vol 45 (8) ◽  
pp. 23-33 ◽  
Author(s):  
Takashi Asano

Water reclamation and reuse provides a unique and viable opportunity to augment traditional water supplies. As a multi-disciplined and important element of water resources development and management, water reuse can help to close the loop between water supply and wastewater disposal. Effective water reuse requires integration of water and reclaimed water supply functions. The successful development of this dependable water resource depends upon close examination and synthesis of elements from infrastructure and facilities planning, wastewater treatment plant siting, treatment process reliability, economic and financial analyses, and water utility management. In this paper, fundamental concepts of water reuse are discussed including definitions, historical developments, the role of water recycling in the hydrologic cycle, categories of water reuse, water quality criteria and regulatory requirements, and technological innovations for the safe use of reclaimed water. The paper emphasizes the integration of this alternative water supply into water resources planning, and the emergence of modern water reclamation and reuse practices from wastewater to reclaimed water to repurified water.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2551
Author(s):  
Yilei Yu ◽  
Xianfang Song ◽  
Yinghua Zhang ◽  
Fandong Zheng

Dry rivers could be effectively recovered by reclaimed water in North China, while river water quality would be an important issue. Therefore, it is important to understand the spatiotemporal variation and controlling factors of river water. Water samples were collected during March, May, July, September, and November in the year 2010, then 20 parameters were analyzed. The water environment was oxidizing and alkaline, which was beneficial for nitrification. Nitrate was the main nitrogen form. Depleted and enriched isotopes were found in reclaimed water and river water, respectively. Total nitrogen (TN) and total phosphorus (TP) of reclaimed water exceed the threshold of reclaimed water reuse standard and Class V in the surface water quality criteria. Most river water was at the severe eutrophication level. The sodium adsorption ratio indicated a medium harmful level for irrigation purpose. Significant spatial and temporal variation was explored by cluster analysis. Five months and nine stations were both classified into two distinct clusters. It was found that 6 parameters (chloride: Cl−, sulphate: SO42−, potassium: K+, sodium: Na+, magnesium: Mg2+, and total dissolved solids: TDS) had significant upward temporal variation, and 12 parameters (dissolved oxygen: DO, electric conductivity: EC, bicarbonate: HCO3−, K+, Na+, Ca2+, TDS, nitrite-nitrogen: NO2-N, nitrate nitrogen: NO3-N, TN, TP, and chlorophyll a: Chl.a) and 4 parameters (Mg2+, ammonia nitrogen: NH3-N, and the oxygen-18 and hydron-2 stable isotope: δ18O and δ2H) had a significant downward and upward spatial trend, respectively. The Gibbs plot showed that river water chemistry was mainly controlled by a water–rock interaction. The ionic relationship and principal component analysis showed that river water had undergone the dissolution of carbonate, calcite, and silicate minerals, cation exchange, a process of nitrification, photosynthesis of phytoplankton, and stable isotope enrichment. In addition, gypsum and salt rock have a potential dissolution process.


2004 ◽  
Vol 39 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kirsten Exall ◽  
Jiri Marsalek ◽  
Karl Schaefer

Abstract As a country on the whole, Canada enjoys abundant freshwater resources, yet there remain regions with severe discrepancies between supply and demand. One solution to insufficient water supplies that has been gaining in popularity in other areas of the world is that of water reuse. Reuse or recycling of treated wastewater reduces effluent discharges into receiving waters and offers a reliable alternative supply of water for applications that do not require high-quality water, freeing up limited potable water resources. As compared to other countries worldwide, water reuse is currently practised infrequently in Canada. Use of reclaimed water requires a clear definition of the quality of water required, and while water quality criteria typically focus on pathogen risk to human health, chemical contaminants may also limit suitability for some reuse applications. Both health and environmental risk assessments are important steps in designing criteria for reuse projects. Alberta and British Columbia have recently produced guidance documents for water reuse projects; the permitted applications are discussed and the water quality criteria are compared with other standards and guidelines. Various treatment technologies for on-site and central wastewater reclamation facilities are described. Additional considerations for implementation of water reuse projects include project feasibility and planning, infrastructure needs, economics, and public acceptance.


Author(s):  
Ping Wang ◽  
Lewis Linker ◽  
James Collier ◽  
Gary Shenk ◽  
Robert Koroncai ◽  
...  

2015 ◽  
Vol 2 (0) ◽  
pp. 9781780404028-9781780404028
Author(s):  
D. R. J. Moore ◽  
A. Pawlisz ◽  
R. Scott Teed

Sign in / Sign up

Export Citation Format

Share Document