NOM removal from different raw waters by membrane filtration

2004 ◽  
Vol 4 (4) ◽  
pp. 165-174 ◽  
Author(s):  
F.H. Frimmel ◽  
F. Saravia ◽  
A. Gorenflo

In this study natural organic matter (NOM) removal by ultra- and nanofiltration from four different raw waters was investigated. The experiments were carried out with a flat channel cross flow unit and with a pilot unit equipped with two parallel spiral wound modules. NOM rejection was characterized using 13CMAS-NMR spectroscopy, scanning electron microscopy (SEM) and size exclusion chromatography with online DOC detection (LC-OCD). Additionally measurements, such as DOC, UVA (254nm and 436nm), AOX- and THM-precursors, ion concentration, turbidity, etc. were made on raw waters, permeates and concentrates. The results indicate that NOM removal by nanofiltration for all water sources is almost complete (>90%), while NOM removal by ultrafiltration depends on raw water chemistry, especially ionic strength. Solid state 13C-NMR spectra of freeze-dried NOM deposits on membrane surfaces suggest the presence of structural polysaccharides (such as chitin and cellulose). SEM images confirm the NMR-results: after filtration, inorganic deposits and algae like structures were found on membrane surfaces.

2015 ◽  
Vol 16 (2) ◽  
pp. 305-313 ◽  
Author(s):  
Euis Nurul Hidayah ◽  
Yung-Chen Chou ◽  
Hsuan-Hsien Yeh

In this study high performance size exclusion chromatography (HPSEC) was used to compare an ultrafiltration (UF) membrane and alum coagulation for their capacity to remove different fractions of natural organic matter (NOM) from water. At the same time, the removal of disinfection by-product (DBP) precursors, as measured by trihalomethane formation potential (THMFP) and haloacetic acid formation potential (HAAFP), was also detected. The results show that the UF membrane mainly removed the aliphatic biopolymer fraction, while alum coagulation mainly removed the humic substances fraction. The results of DBP precursor analysis show that more THMFP was removed by the UF membrane than HAAFP, while the reverse was true for alum coagulation. It is conjectured that the aliphatic biopolymer fraction is the major precursor for trihalomethanes (THMs), while the humic substances fraction is the major precursor for haloacetic acids (HAAs).


2014 ◽  
Vol 70 (10) ◽  
pp. 1362-1367 ◽  
Author(s):  
Emmanuel Nji ◽  
Dianfan Li ◽  
Declan A. Doyle ◽  
Martin Caffrey

The prokaryotic lysine-specific permease (LysP) belongs to the amino acid–polyamine–organocation (APC) transporter superfamily. In the cell, members of this family are responsible for the uptake and recycling of nutrients, for the maintenance of a constant internal ion concentration and for cell volume regulation. The detailed mechanism of substrate selectivity and transport of L-lysine by LysP is not understood. A high-resolution crystal structure would enormously facilitate such an understanding. To this end, LysP fromPseudomonas aeruginosawas recombinantly expressed inEscherichia coliand purified to near homogeneity by immobilized metal ion-affinity chromatography (IMAC) and size-exclusion chromatography (SEC). Hexagonal- and rod-shaped crystals were obtained in the presence of L-lysine and the L-lysine analogue L-4-thialysine by vapour diffusion and diffracted to 7.5 Å resolution. The diffraction data were indexed in space groupP21, with unit-cell parametersa= 169.53,b= 169.53,c= 290.13 Å, γ = 120°.


2008 ◽  
Vol 57 (7) ◽  
pp. 1009-1015 ◽  
Author(s):  
Seong-Nam Nam ◽  
Gary Amy

Using three analytical techniques of size exclusion chromatography (SEC), fluorescence excitation-emission matrix (EEM), and dissolved organic nitrogen (DON) measurement, differentiating characteristics of effluent organic matter (EfOM) from natural organic matter (NOM) have been investigated. SEC reveals a wide range of molecular weight (MW) for EfOM and high amount of high MW polysaccharides, and low MW organic acids compared to NOM. Clear protein-like peaks using fluorescence EEM were a major feature of EfOM distinguishing it from NOM. Fluorescence index (FI), an indicator to distinguish autochthonous origin from allochthonous origin, differentiated EfOM from NOM by exhibiting higher values, indicating a microbial origin. In EfOM samples, DON present in higher amounts than NOM.


2011 ◽  
Vol 64 (8) ◽  
pp. 1685-1691 ◽  
Author(s):  
T. Li ◽  
B. Z. Dong ◽  
Z. Liu ◽  
W. H. Chu

Algogenic organic matter (AOM) was extracted from blue-green algae (cyanobacteria) and its characteristic was determined by various methods including high-pressure size-exclusion chromatography (HP-SEC), hydrophobic and hydrophilic fractionation, molecular weight (MW) fractionation and fluorescence excitation emission matrix (EEM). The results revealed that AOM was hydrophilic fractionation predominantly, accounting for 78%. The specific ultraviolet absorbance of AOM was 1.1 L/(mg m) only. The analysis for MW distribution demonstrated that organic matter greater than 30,000 MW accounted for over 40% and was composed of mostly neutral hydrophilic compound. EEM analyses revealed that protein-like and humic-substances existed in AOM. A test for membrane filtration exhibited that AOM could make ultrafiltration membrane substantial flux decline, which can be attributed to membrane pore clog caused by neutral hydrophilic compound with larger MW.


2011 ◽  
Vol 71-78 ◽  
pp. 3037-3042
Author(s):  
Na Wang ◽  
Jun Ma

The adsorbability of colloidal particles from different stages of a conventional water treatment plant was studied with the assistance of micro-membrane filtration experiment. The microfiltration (MF) performance and the scanning electron microscope (SEM) images of the foulants on membrane surface were investigated. The results showed that the particles in the ozonated water (OW) had the strongest adsorbability, and stronger than that in the clarified water (CW); and the particles in the sand filtrated water (SFW) had relatively weaker adsorbability than that in the raw water (RW). The particles in the sand filter backwash water (SFBW) were mainly consisted of detached aggregates and had weak attachment with the membrane surface.


Sign in / Sign up

Export Citation Format

Share Document