scholarly journals Enhanced fluoride removal from drinking water in wide pH range using La/Fe/Al oxides loaded rice straw biochar

Author(s):  
Nan Zhou ◽  
Xiangxin Guo ◽  
Changqing Ye ◽  
Ling Yan ◽  
Weishi Gu ◽  
...  

Abstract A novel and highly efficient adsorbent was prepared by loading La/Fe/Al oxides onto rice straw biochar (RSBC) and was tested for the ability to remove fluoride from drinking water. Characterized by SEM, XRD, Zetapotential and FTIR, it was found that the ternary metal oxides were successfully loaded on the surface of biochar in amorphous form, resulting in the formation of hydroxyl active adsorption sites and positive charges, which played a synergistic role in fluoride removal. Through batch adsorption tests, key factors including contact time, initial fluoride concentration, initial pH and co-existing anions effects were investigated. Results showed that the tri-metallic modified biochar (La/Fe/Al-RSBC) had excellent fluoride removal performance with an adsorption capacity of 111.11 mg/g. Solution pH had little impacts on the removal of fluoride, the adsorbent retained excellent fluoride removal capacity in a wide pH range of 3.0–11.0. The co-existing anions had almost no effect on the fluoride removal by La/Fe/Al-RSBC. In addition, La/Fe/Al-RSBC could be regenerated and reused. Electrostatic adsorption and ion exchange were responsible for this adsorption behavior. These findings suggested the broad application prospect of a prepared biochar adsorbent based on rare earth and aluminum impregnation for the fluoride removal from drinking water.

2013 ◽  
Vol 726-731 ◽  
pp. 695-699
Author(s):  
Li Hong ◽  
Si Xiang Wang ◽  
Yong Liu ◽  
Yue Chun Zhang

Humic acid adsorbent modified with metal ions was prepared by gel polymerization and named gel composite of metal ion and humic acid, which abbreviated GCMH to uptake fluoride from drinking water. The samples were measured by X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images. Fluoride adsorption onto the synthesized samples was investigated by batch adsorption method. In previous works, detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH, temperatures and co-existing anions. The maximum fluoride removal was obtained at pH7. Presence of HCO3− adversely affected the adsorption of fluoride. The optimum absorption conditions were at the dose of 10g/L, temperature of water of 55°Cand contact time of 6hs.


2005 ◽  
Vol 93 (4) ◽  
Author(s):  
Ana C. Q. Ladeira ◽  
Carlos A. Morais

SummaryUranium in solution can be precipitated over a wide pH range, from acidity and alkalinity, depending upon the solution and the precipitant used. The precipitate is generally filtered and the solution resultant contains uranium that should be recovered. This work is aimed at the selection of an appropriate resin for uranium recovery from alkaline solutions in the presence of ammonia, carbonate and fluoride. The ability of uranium extraction of 3 types of polymeric strong base resin was assessed. Laboratory solutions were prepared to determine the influence of the ions like ammonia, carbonate and fluoride on the uranium recovery by resins. The uranium concentration was 100 mg/L and the solution pH ranged from 9.2 to 10.4. The results, obtained by batch experiments, showed that excess of carbonate and fluoride completely inhibit uranium uptake in the pH range studied. Even low concentrations of fluoride and carbonate decrease uranium adsorption by resins. The optimum concentration was below 2.5 g/L (0.04 mol/L) and 5.0 g/L (0.26 mol/L) for carbonate and fluoride, respectively. The presence of high concentration of ammonia up to 20 g/L (1.20 mol/L) did not inhibit the uranium exchange process. Among the three types of resins studied IRA 910U was the most promising adsorbent for uranium at the conditions employed in this work.


Author(s):  
Cyprian Murutu ◽  
Maurice S. Onyango ◽  
Aoyi Ochieng ◽  
Fred Otieno

Fluoride in drinking water above permissible levels is responsible for human dental and skeletal fluorosis. Adsorptive based defluoridation is the most popular technique with several end-user applications. Consequently, this paper describes the fluoride removal potential of a novel sorbent, limestone-derived apatite from drinking water. The adsorbent was prepared by calcining limestone followed by reacting with orthophosphoric acid. Batch sorption studies were performed as a function of contact time, pH, initial fluoride concentration, temperature and adsorbent dose. Sorption of fluoride was found to be pH dependent with a maximum occurring in the pH range of 5-9. The authors also observed that the material had a buffering effect on the same pH range. Meanwhile, the adsorption capacity was found to increase with temperature, depicting the endothermic nature of the adsorption process and decreases with adsorbent mass. The equilibrium data was well described by the conventional Langmuir isotherm, from which isotherm the maximum adsorption capacity was determined as 22.2 mg/g. From the kinetic perspective, the fluoride adsorptive reaction followed the pseudo-second order mechanism.


Author(s):  
Cyprian Murutu ◽  
Maurice S. Onyango ◽  
Aoyi Ochieng ◽  
Fred Otieno

Fluoride in drinking water above permissible levels is responsible for human dental and skeletal fluorosis. Adsorptive based defluoridation is the most popular technique with several end-user applications. Consequently, this paper describes the fluoride removal potential of a novel sorbent, limestone-derived apatite from drinking water. The adsorbent was prepared by calcining limestone followed by reacting with orthophosphoric acid. Batch sorption studies were performed as a function of contact time, pH, initial fluoride concentration, temperature and adsorbent dose. Sorption of fluoride was found to be pH dependent with a maximum occurring in the pH range of 5-9. The authors also observed that the material had a buffering effect on the same pH range. Meanwhile, the adsorption capacity was found to increase with temperature, depicting the endothermic nature of the adsorption process and decreases with adsorbent mass. The equilibrium data was well described by the conventional Langmuir isotherm, from which isotherm the maximum adsorption capacity was determined as 22.2 mg/g. From the kinetic perspective, the fluoride adsorptive reaction followed the pseudo-second order mechanism.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Aneeza Rafique ◽  
M. Ali Awan ◽  
Ayesha Wasti ◽  
Ishtiaq A. Qazi ◽  
Muhammad Arshad

The study describes the removal of fluoride from drinking water using modified immobilized activated alumina (MIAA) prepared by sol-gel method. The modification was done by adding a specific amount of alum during the sol formation step. The fluoride removal efficiency of MIAA was 1.35 times higher as compared to normal immobilized activated alumina. A batch adsorption study was performed as a function of adsorbent dose, contact time, stirring rate, and initial fluoride concentration. More than 90% removal of fluoride was achieved within 60 minutes of contact time. The adsorption potential of MIAA was compared with activated charcoal which showed that the removal efficiency was about 10% more than the activated charcoal. Both the Langmuir and Freundlich adsorption isotherms fitted well for the fluoride adsorption on MIAA with the regression coefficientR2of 0.99 and 0.98, respectively. MIAA can both be regenerated thermally and chemically. Adsorption experiments using MIAA were employed on real drinking water samples from a fluoride affected area. The study showed that modified immobilized activated alumina is an effective adsorbent for fluoride removal.


2018 ◽  
Vol 192 ◽  
pp. 03035
Author(s):  
Thachanan Samanmulya ◽  
Pawinee Deetae ◽  
Patthranit Wongpromrat

This study focused on adsorption of atrazine in adsorbent synthesized from Rice Straw. Rice Straw biochar were used in the study as they exhibited significantly high adsorption capacity for pesticide. Briefly, rice straw was pyrolysis at 600°C under nitrogen then biochar was modified using H3PO4. Biochar were characterized for their physico-chemical characteristics. The elemental analysis of biochar was performed using CHNS Analysis. The surface area and pore volume of adsorbents were estimated using the Brunauer, Emmett, and Teller (BET Analysis). In parts of Batch adsorption experiments was performed in range of room temperature and were divided to 2 parts. Part 1: Study of the kinetics adsorption was investigated using two models, namely, the pseudo-first-order and the pseudo-second-order models. Part 2: study of Adsorption isotherms. The results of CHNS analysis shows the elemental analysis that 51.795% of C, 0.763% of H, 1.634% of N and 0.654 % of S and the result of BET Analysis shows the surface area is 372.4 m2/g and pore volume of adsorbents is 0.315 cm3. From plotting between qt(mg/g) and time (t) shows the dynamics of the adsorption of atrazine onto the biochar at 15 ppm of initial atrazine concentrations. In general, atrazine was adsorbed quickly around 1-30 min. This could be due to fast mass transfer of solute from the solution to surface of adsorbent s as a result of concentration gradient of the solute. The study of the kinetics adsorption showed that the pseudo-second-order model best described the adsorption which agrees with chemisorption as the rate controlling mechanism.


2011 ◽  
Vol 63 (12) ◽  
pp. 2788-2795 ◽  
Author(s):  
Poonam Gwala ◽  
Subhash Andey ◽  
Vasant Mhaisalkar ◽  
Pawan Labhasetwar ◽  
Sarika Pimpalkar ◽  
...  

An excess or lack of fluoride in drinking water is harmful to human health. Desirable and permissible standards of fluoride in drinking water are 1.0 and 1.5 mg/L, respectively, as per Indian drinking water quality standards i.e., BIS 10500, 1991. In this paper, the performance of an electro-coagulation defluoridation batch process with aluminium electrodes was investigated. Different operational conditions such as fluoride concentration in water, pH and current density were varied and performance of the process was examined. Influence of operational conditions on (i) electrode polarization phenomena, (ii) pH evolution during electrolysis and (iii) the amount of aluminium released (coagulant) was investigated. Removal by electrodes is primarily responsible for the high defluoridation efficiency and the adsorption by hydroxide aluminium floc provides secondary effect. Experimental data obtained at optimum conditions that favored simultaneous mixing and flotation confirmed that concentrations lower than 1 mg/L could be achieved when initial concentrations were between 2 and 20 mg/L. pH value was found to be an important parameter that affected fluoride removal significantly. The optimal initial pH range is between 6 and 7 at which effective defluoridation and removal efficiencies over 98% were achieved. Furthermore, experimental results prominently displayed that an increase in current density substantially reduces the treatment duration, but with increased residual aluminium level. The paper focuses on pilot scale defluoridation process optimization along with aluminium leaching and experimental results were compared with a full-scale plant having capacity of 600 liter per batch.


2011 ◽  
Vol 1 (4) ◽  
pp. 213-223 ◽  
Author(s):  
Sabrina Sorlini ◽  
Daniela Palazzini ◽  
Carlo Collivignarelli

In Senegal there are four regions where fluoride concentration in drinking water exceeds the World Health Organization guide value of 1.5 mg/L. This generates permanent damages to the teeth (dental fluorosis) and to the skeleton (skeletal fluorosis). A safe, efficient, simple and low-cost effective defluoridation technique is not available yet and needs to be developed in order to prevent the occurrence of fluorosis. This experimental research was carried out in order to define an appropriate technology for fluoride removal from groundwater in Senegal. Batch tests and filtration tests at laboratory and pilot scale were carried out using animal bone char as adsorbent material for fluoride removal. Possible influencing parameters, such as specific ions in Senegalese drinking water, were investigated and the best process conditions were defined for the application in Senegal. The results attest to the efficacy of bone char in removing fluoride from Senegalese water: at pilot scale the mean specific adsorption was 2.7 mg F−/g of bone char, corresponding to a total treated volume of 4,000 L and a filter life of nearly three months.


2007 ◽  
Vol 56 (9) ◽  
pp. 51-57 ◽  
Author(s):  
J.K. Yang ◽  
M.R. Yu ◽  
S.M. Lee

In this study, the applicability of calcined starfish (SF) and iron-coated SF (ICSF) as potential adsorbents for the treatment of wastewater containing heavy metal ions was evaluated. ICSF was prepared by mixing FeCl3 solution previously adjusted to pH 7 ∼ 9 with SF at 105 °C. From the dissolution test at pH 2, ICSF showed strong acid-proof properties. In the batch adsorption, Cu(II) adsorption onto ICSF was completed within 150 minutes, while 47% Cu(II) was removed with SF alone. This result clearly suggests that the coated Fe(III) serves additional adsorption sites, resulting in the enhanced removal of heavy metal ions. The removed fraction of both Cu(II) and Pb(II) increased with increasing solution pH and nearly complete removals of Pb(II) and Cu(II) were observed at around pH 6 and 8, respectively. From the adsorption isotherm of Cu(II) onto SF and ICSF at pH 3.0, the removed amount of Cu(II) by ICSF was greater than that by SF over the entire concentration range studied. In the column test, the breakthrough of Cu(II) in the ICSF column was greatly retarded compared to that in the SF column. Based on the drinking water regulations for Cu(II), SF and ICSF were able to remove 3400 and 8600 mg/kg of Cu(II) from the wastewater, respectively.


Author(s):  
Sunethra Kanthi Gunatilake

Sorption capacity of two different biochar (saw dust and rice straw) was evaluated in the recovery of chromium from wastewater. The optimum pH was 5-7 for recovery of Cr(III). Optimum yield was received after 1 hour contacting time with an adsorbent dose of 1 g/L and initial concentration was ∼20 mg/L. Cr(III) ions were transported to biochar surface through adsorption and intra-particle diffusion process. Langmuir and Freundlich kinetic parameters indicated that the affinity of the sorbent towards the uptake of Cr(III) ions and adsorptions were favorable. According to FTIR analysis of Cr(III) ions bound to active sites either electrostatic attraction or complexation mechanism. These results indicated that carbonyl, hydroxyl, amine and halides are the main adsorption sites in saw dust and rice straw biochar and these functional groups complexes with Cr(III) ions in the aqueous solution and changed the chemical environment of the functional groups in the biochar.


Sign in / Sign up

Export Citation Format

Share Document