Occurrence of Viruses in Treated Drinking Water in the United States

1985 ◽  
Vol 17 (4-5) ◽  
pp. 689-700 ◽  
Author(s):  
Elmer W. Akin

Health concerns regarding waterborne transmission of enteric viruses began to develop around 1940 in the United States (U.S.) with the isolation of poliovirus from human feces and sewage. The implication of these isolations for the transmission of viral disease through contaminated drinking water stimulated research on methodology for virus detection, recovery and assessment from water. Although virus methods research is still an important area of study, relatively sensitive procedures became available during the past decade for recovering many enteric virus types from large-volume samples of drinking water. Controversy surrounded many of the early reported isolations of viruses from treated drinking water using these procedures due to the suspicion of laboratory contamination. The occurrence of viruses in drinking water treated by currently accepted procedures has still not been proven by the U.S. experience although the likelihood may be gaining support. However, a virus survey of 54 water supplies and extensive studies of two water systems by the U.S. Environmental Protection Agency did not demonstrate viral contamination of treated water derived from surface sources.

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
James L Crooks ◽  
Wayne Cascio ◽  
Madelyn Percy ◽  
Jeanette Reyes ◽  
Lucas Neas ◽  
...  

Introduction: Extreme weather events such as dust storms are predicted to become more frequent as the global climate warms through the 21st century. Studies of Asian, Saharan, Arabian, and Australian dust storms have found associations with cardiovascular and total non-accidental mortality and hospitalizations for stroke. However, the only population-level epidemiological work on dust storms in the United States was focused on a single small metropolitan area (Spokane, WA), and it is uncertain whether its null results are representative of the country as a whole. Hypothesis: Dust storms in the United States are associated with daily cardiovascular mortality. Methods: Dust storm incidence data (N=141), including date and approximate location, as well as meteorological station observations, were taken from the U.S. National Weather Service. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Ambient particulate matter monitor concentrations were obtained from the U.S. Environmental Protection Agency. Inference was performed used conditional logistic regression models under a case-crossover design while accounting for the nonlinear effect of temperature. Results: We found a 9.5% increase in cardiovascular mortality at a two-day lag (95% CI: [0.31%,19.5%], p = 0.042). The results were robust to adjusting for heat waves and ambient particulate matter concentrations. Analysis of storms occurring only on days with <0.1 inches of precipitation strengthened these results and in addition yielded a mean daily increase of 4.0% across lags 0-5 (95% CI: [0.07%,20.8%], p = 0.046). In Arizona, the U.S. state with the largest number of storms, we observed a 13.0% increase at a three-day lag (CI: [0.40%,27.1%], p = 0.043). Conclusions: Dust storms in the U.S. are associated with increases in lagged cardiovascular mortality. This has implications for the development of public health advisories and suggests that further public health interventions may be needed. Disclaimer: This work does not represent official U.S. Environmental Protection Agency policy.


Author(s):  
Constance J. Doyle

Triage and rescue of casualties from accidents involving hazardous materials is a challenge for many emergency medical services (EMS) personnel. With very toxic materials, the untrained and unprepared rescuer may become a victim. In addition, few hospitals in the United States have decontamination units attached to their emergency departments and emergency department personnel may become exposed if the casualty is not decontaminated. Many environmental cleanup teams, including the U.S. Environmental Protection Agency (EPA) team, are well trained in materials handling but are not immediately available when a hazardous materials spill with personal injuries occurs.


1999 ◽  
Vol 40 (2) ◽  
pp. 69-76 ◽  
Author(s):  
T. Viraraghavan ◽  
K. S. Subramanian ◽  
J. A. Aruldoss

The current United States maximum contaminant level for arsenic in drinking water is set at 50 μg/l. Because of the cancer risks involved, Canada has already lowered the maximum contaminant level to 25 μg/l; the United States Environmental Protection Agency is reviewing the current allowable level for arsenic with a view of lowering it significantly. Various treatment methods have been adopted to remove arsenic from drinking water. These methods include 1) adsorption-coprecipitation using iron and aluminum salts, 2) adsorption on activated alumina, activated carbon, and activated bauxite, 3) reverse osmosis, 4) ion exchange and 5) oxidation followed by filtration. Because of the promise of oxidation-filtration systems, column studies were conducted at the University of Regina to examine oxidation with KMnO4 followed by filtration using manganese greensand and iron-oxide coated sand to examine the removal of arsenic from drinking water; these results were compared with the data from ion exchange studies. These studies demonstrated that As (III) could be reduced from 200 μg/l to below 25 μg/l by the manganese greensand system. In the case of manganese greensand filtration, addition of iron in the ratio of 20:1 was found necessary to achieve this removal.


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
William A. Horn ◽  
Joshua D. Beard

The Michigan Department of Environment, Great Lakes, and Energy (“EGLE”), formerly the Michigan Department of Environmental Quality, is in the process of seeking primary enforcement responsibility from the United States Environmental Protection Agency (“EPA”) for its Underground Injection Control (“UIC”) program for Class II wells pursuant to Part C of the Safe Drinking Water Act (“SDWA”).


Author(s):  
Uloma Igara Uche ◽  
Sydney Evans ◽  
Soren Rundquist ◽  
Chris Campbell ◽  
Olga V. Naidenko

Research studies analyzing the geospatial distribution of air pollution and other types of environmental contamination documented the persistence of environmental health disparities between communities. Due to the shortage of publicly available data, only limited research has been published on the geospatial distribution of drinking water pollution. Here we present a framework for the joint consideration of community-level drinking water data and demographic data. Our analysis builds on a comprehensive data set of drinking water contaminant occurrence for the United States for 2014–2019 and the American Community Survey 5-year estimates (2015–2019) from the U.S. Census Bureau. Focusing on the U.S. states of California and Texas for which geospatial data on community water system service boundaries are publicly available, we examine cumulative cancer risk for water served by community water systems of different sizes relative to demographic characteristics for the populations served by these water systems. In both California and Texas, greater cumulative cancer risk was observed for water systems serving communities with a higher percentage of Hispanic/Latino and Black/African American community members. This investigation demonstrates that it is both practical and essential to incorporate and expand the drinking water data metrics in the analysis of environmental pollution and environmental health. The framework presented here can support the development of public policies to advance environmental health justice priorities on state and federal levels in the U.S.


2018 ◽  
Vol 19 (3) ◽  
pp. 681-694
Author(s):  
Steven J. Luis ◽  
Elizabeth A. Miesner ◽  
Clarissa L. Enslin ◽  
Keith Heidecorn

Abstract When deciding whether or not to regulate a chemical, regulatory bodies often evaluate the degree to which the public may be exposed by evaluating the chemical's occurrence in food and drinking water. As part of its decision-making process, the United States Environmental Protection Agency (USEPA) evaluated the occurrence of perchlorate in public drinking water by sampling public water systems (PWSs) as part of the first implementation of the Unregulated Contaminant Monitoring Rule (UCMR 1) between 2001 and 2005. The objective of this paper is to evaluate the current representativeness of the UCMR 1 dataset. To achieve this objective, publicly available sources were searched to obtain updated perchlorate data for the majority of large PWSs with perchlorate detections under UCMR 1. Comparison of the updated and UCMR 1 perchlorate datasets shows that the UCMR 1 dataset is no longer representative because the extent and degree of occurrence has decreased since implementation of UCMR 1. Given this finding, it seems appropriate for regulatory bodies engaged in decision-making processes over several years to periodically re-evaluate the conditions that prompted the regulatory effort, thereby ensuring that rules and regulations address actual conditions of concern.


Author(s):  
Leanne Fawkes ◽  
Garett Sansom

Safe drinking water is celebrated as a public health achievement and is a top priority for the Environmental Protection Agency. Yet today, lead (Pb) contaminated drinking water has the potential to be a public health crisis in the United States. Despite efforts to provide safe drinking water, update water infrastructure, and ensure strict drinking water regulations, there are incidents of unsafe lead levels and reports of associated adverse health effects. While there has been increased attention paid to the quality of drinking water within individuals’ homes, little research has examined the presence and concentration of lead in water from drinking fountain sources located in public parks. In this study, we sampled drinking water from every accessible public park in the Bryan/College Station (BCS), TX metropolitan area (N = 56). With a lower detection level of 2.0 μg/L, we discovered a mean lead concentration of 1.3 μg/L across all sites and a maximum of 8.0 μg/L. Furthermore, neighborhoods below the median income for BCS were twice as likely to have detectable lead levels in their water and had 1.5 times the mean concentration. This study underscores the need for action and supports previous studies that have identified a disparate burden to lead exposure among low socioeconomic populations within the United States. By examining the water quality in drinking fountains in publicly accessible parks, the results of our study provide public health professionals with important information about where infrastructure should be improved and the potential harms of lead in drinking fountain water.


Author(s):  
Eduardo Reátegui ◽  
Erik Reynolds ◽  
Lisa Kasinkas ◽  
Amit Aggarwal ◽  
Michael J. Sadowsky ◽  
...  

The herbicide atrazine is used for control of broadleaf weeds, principally in corn, sorghum, and sugarcane [1]. Atrazine is currently used in 70 countries at an estimated annual rate of 111,000 tons [2, 3]. Atrazine is typically applied early in the planting season. However, Heavy rainfall events, shortly after application may lead to detectable atrazine concentrations in waterways and in drinking-water supplies. The United States Environmental Protection Agency established a 3 ppb limit of atrazine in drinking water. In some instances, municipal water treatment plants use chemicals and other treatment processes, such as activated carbon, to reduce atrazine to below the 3 ppb legal limit for drinking water.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jishan Wu ◽  
Miao Cao ◽  
Draco Tong ◽  
Zach Finkelstein ◽  
Eric M. V. Hoek

AbstractEnsuring safe water supply for communities across the United States is a growing challenge due to aging infrastructure, impaired source water, strained community finances, etc. In 2019, about 6% of public water utilities in the U.S. had a health-based violation. Due to the high risk of exposure to various contaminants in drinking water, point-of-use (POU) drinking water treatment is rapidly growing in popularity in the U.S. and beyond. POU treatment technologies include various combinations of string-wound sediment filters, activated carbon, modified carbon, ion exchange and redox media filters, reverse osmosis membranes, and ultraviolet lamps depending on the contaminants of concern. While the technologies are well-proven, highly commoditized, and cost-effective, most systems offer little in the way of real-time performance monitoring or interactive technology like other smart home appliances (e.g., thermostats, smoke detectors, doorbells, etc.). Herein, we review water quality regulations and violations in the U.S. as well as state-of-the-art POU technologies and systems with an emphasis on their effectiveness at removing the contaminants most frequently reported in notices of violations. We conclude by briefly reviewing emerging smart water technologies and the needs for advances in the state-of-the-art technologies. The smartness of commercially available POU water filters is critiqued and a definition of smart water filter is proposed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. Tom Mueller ◽  
Stephen Gasteyer

AbstractMany households in the United States face issues of incomplete plumbing and poor water quality. Prior scholarship on this issue has focused on one dimension of water hardship at a time, leaving the full picture incomplete. Here we complete this picture by documenting the full scope of water hardship in the United States and find evidence of a regionally-clustered, socially unequal nationwide household water crisis. Using data from the American Community Survey and the Environmental Protection Agency, we show there are 489,836 households lacking complete plumbing, 1,165 community water systems in Safe Drinking Water Act Serious Violation, and 21,035 Clean Water Act permittees in Significant Noncompliance. Further, we demonstrate this crisis is regionally clustered, with the specific spatial pattern varying by the specific form of water hardship. Elevated levels of water hardship are associated with the social dimensions of rurality, poverty, indigeneity, education, and age—representing a nationwide environmental injustice.


Sign in / Sign up

Export Citation Format

Share Document