Effect of Low Water Level on the Water Quality of the Littoral Zone in Lake Kinneret

1993 ◽  
Vol 27 (7-8) ◽  
pp. 363-371 ◽  
Author(s):  
Sarig Gafny ◽  
Avital Gasith

Water quality in the shallow littoral of Lake Kinneret was examined during a period of low water levels in 1989-1990. On calm days, no significant difference was found between the water quality on different sites around the lake or between the littoral and the open water. Lowering of the lake level in Lake Kinneret is associated with a major change in the nature of the bottom of the littoral zone in many sites, from rocky substrate in high lake levels (>212m below sea level) to sandy or clay in lower levels. During north-easterly storms, in winter, the concentrations of suspended solids and total phosphorus were markedly higher in leeward littoral sites compared to other regions of the littoral zone. This may be attributed to resuspension of sediments by the wave action over the soft bottom. In rainy winters, runoff, mainly Jordan River input, may locally affect the water quality and result in a north-south gradient.

2021 ◽  
Vol 880 (1) ◽  
pp. 012051
Author(s):  
H A Suleiman ◽  
M M Hanafiah

Abstract Improper solid waste management in Kano Metropolis, Nigeria has become a serious threat to human health and ground water quality. Groundwater monitoring should be conducted to assess the groundwater contamination, especially originated from leachate generated from the dumpsites. Most of the dumpsites are located nearby water body that subsequently affecting the quality of the water for human purposes. This study aims to investigate the relationships between different physical-chemical and biological parameters during the two seasons (dry and wet seasons) in Kano Metropolis area as well as to identify the sources of variation during the two seasons. The level of some physical-chemical and biological parameters of the groundwater (wells) and dump sites were assessed (i.e. temperature, pH, conductivity, suspended solids, turbidity, hardness colour, e-coli and coliform). Mean concentration of some physical-chemical and biological parameters except that of temperature, colour, pH and total dissolved solids were found to be above the acceptable limit of the National and International standard of drinking water quality, NESREA and WHO. The sources and variations of the samples results were tested using statistical analysis. The water samples show a considerable level of pollution. The analysis of the groundwater and that of dump sites reveals no significant difference in the parameters measured. It is therefore recommended that the water from this source should be monitored and treated properly before consumption.


Author(s):  
Jose Simmonds ◽  
Juan A. Gómez ◽  
Agapito Ledezma

This article contains a multivariate analysis (MV), data mining (DM) techniques and water quality index (WQI) metrics which were applied to a water quality dataset from three water quality monitoring stations in the Petaquilla River Basin, Panama, to understand the environmental stress on the river and to assess the feasibility for drinking. Principal Components and Factor Analysis (PCA/FA), indicated that the factors which changed the quality of the water for the two seasons differed. During the low flow season, water quality showed to be influenced by turbidity (NTU) and total suspended solids (TSS). For the high flow season, main changes on water quality were characterized by an inverse relation of NTU and TSS with electrical conductivity (EC) and chlorides (Cl), followed by sources of agricultural pollution. To complement the MV analysis, DM techniques like cluster analysis (CA) and classification (CLA) was applied and to assess the quality of the water for drinking, a WQI.


2020 ◽  
Vol 69 (7-8) ◽  
pp. 371-376
Author(s):  
Šuhreta Delibašić ◽  
Jasna Huremović ◽  
Sabina Žero ◽  
Sabina Gojak-Salimović

The present study was conducted to investigate the water quality of the Trstionica River, Bosnia and Herzegovina. The physicochemical properties (temperature, pH, conductivity, total solids after evaporation at 105 °C), content of metals (calcium (Ca), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb) and zinc (Zn)), and anions (chloride (Cl–), and phosphate (PO43–)) were determined in water samples collected at seven locations during two sampling periods: unstable weather conditions (precipitation), and stable weather conditions (without precipitation). There was a significant difference in the content of individual parameters in the river water depending on the sampling time. For determination of metals concentrations, which were below the limit of detection, a preconcentration method using an ion-exchange resin was applied. The metals concentrations during the rainy day were in the order Ca > Mg > Na > Fe > Cu > Zn > Pb > Mn with mean values of 343, 6.03, 1.94, 0.18, 0.20, 0.03, 0.02, 0.01 mg dm–3, respectively, and during stable weather conditions: Ca > Mg > Na > Cu > Fe > Mn > Zn with mean values of 288, 7.62, 2.38, 0.11, 0.10, 0.01, 0.01 mg dm–3, respectively. Cd, Cr, and Ni concentrations were below limit of detection in both cases. Obtained values were compared with World Health Organization (WHO) regulations. The results showed that the Trstionica River in the investigated part of the stream meets most of the parameters required by the regulations. The correlation between analysed parameters was assessed, as well. Based on the calculated water quality index values, the water of Trstionica River falls into the category of excellent water.


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


2017 ◽  
Vol 5 (4RASM) ◽  
pp. 71-77
Author(s):  
Babitha Rani ◽  
Dimple Bahri ◽  
Prabin Neupane ◽  
Kunal Kothari ◽  
Vishal Gadgihalli ◽  
...  

A study was carried out to find out the water quality ofByramangala lake of Ramanagara district. The water quality of Byramangala lake water and ground water from bore wells situated in the area within 600 meters surrounding the lake was analyzed. The quality analysis of various parameters such as BODs, COD, DO, E-Coli, and pH, Total Dissolved Solids, Total Suspended Solids and Total Hardness were tested. In addition, the presence of metals such as Cadmium (Cd), Chromium (Cr), Lead (Pb), and Iron (Fe) in the lake water and ground water samples were tested. Results for the various tests conducted showed similar trends for both lake water and ground water. It was observed that certain parameters such as BOD5, and COD were beyond permissible limits as per the BIS standards for drinking water. A few remedial measures have been proposed that may help in mitigating the pollution in the selected project area Byramangala Lake.


2002 ◽  
Vol 45 (1) ◽  
pp. 103-110 ◽  
Author(s):  
E. Giraldo ◽  
A. Garzón

The potential application of Water Hyacinth (Eichhornia crassipes) in organic matter degradation, sedimentation, nutrient and heavy metal absorption and sulfur reduction in the Muña Reservoir has been tested in experimental lagoons. The lagoons were operated at hydraulic retention times (HRT) of 6, 9 and 15 days. One lagoon was covered with Water Hyacinth, which is naturally growing in the Muña Reservoir, while another lagoon was operated as a conventional oxidation pond. The Water Hyacinth lagoon had better removal efficiencies for almost all parameters measured: BOD5, total suspended solids, COD, nitrogen, phosphorus and heavy metals. The oxidation lagoon was facultative for HRT of 9 and 15 days, and anoxic when operated at 6 days HRT. At HRT of 15 days the water quality in the effluent of the covered lagoon corresponded to 12 mg/l of BOD, 6 mg/l of suspended solids and 0.8 mg/l of hydrogen sulfide. Hydrogen sulfide levels in the Muña reservoir can be substantially reduced at HRT higher than 15 days in both lagoons. The uncovered lagoon had better hydrogen sulfide removal during the day but presents high levels at night. If the hydraulic retention time in the Muña reservoir is increased, the water quality of the Bogota river can be substantially improved for all the HRTs tested in the pilot units. HRT seems to give a better prediction of overall effluent water quality than surface loading. More research is needed in order to define the optimum water hyacinth density in the Muña reservoir to determine its influence on the water quality of the effluent. The influence is expected to be negative due to an internal increase of BOD, solids, nutrients and metals loads due to plant decay.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Marco A. García-Morales ◽  
Julio César González Juárez ◽  
Sonia Martínez-Gallegos ◽  
Gabriela Roa-Morales ◽  
Ever Peralta ◽  
...  

The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co), turbidity (1648 ± 49 FAU), and COD (3608 ± 250 mg/L). Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration) to 6.05 ± 0.03 mg/L (outlet sand filtration) after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment). The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Teck-Yee Ling ◽  
Chen-Lin Soo ◽  
Jagath-Retchahan Sivalingam ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
...  

The study of the impact of logging activities on water and sediment quality of Sarawak forest streams is still scarce despite Sarawak being the largest exporter of timber in Malaysia. This study was aimed at determining the water and sediment quality of forest streams in Sarawak and the potential impact of logging activities. In situ parameters were measured, and water and sediment samples were collected at six stations before rain. Additionally, water quality was investigated at three stations after rain. The results showed that canopy removal resulted in large temperature variation and sedimentation in the forest streams. Lower suspended solids were found at stations with inactive logging (<2 mg/L) compared to active logging (10–16 mg/L) activities. The highest concentration of total nitrogen and total phosphorus in water and sediment was 4.4 mg/L, 77.6 μg/L, 0.17%, and 0.01%, respectively. Besides, significantly negative correlation of sediment nitrogen and water total ammonia nitrogen indicated the loss of nitrogen from sediment to water. Water quality of the streams deteriorated after rain, in particular, suspended solids which increased from 8.3 mg/L to 104.1 mg/L. This study reveals that logging activities have an impact on the water quality of Sarawak forest streams particularly in rainfall events.


Sign in / Sign up

Export Citation Format

Share Document