A titration technique for on-line nitrification monitoring in activated sludge

1998 ◽  
Vol 37 (12) ◽  
pp. 103-110 ◽  
Author(s):  
Krist Gernaey ◽  
Herwig Bogaert ◽  
Peter Vanrolleghem ◽  
Alessandro Massone ◽  
Alberto Rozzi ◽  
...  

A titrimetric method to monitor nitrification was applied on a pilot activated sludge plant for biological N removal. Mixed liquor was sampled from the aerobic compartment of the treatment plant and a titration in-sensor experiment was performed. Interpretation of the cumulative base addition curves resulting from each titration in-sensor experiment was done using both a simple slope extrapolation method and a model-based non-linear parameter estimation method. The NH4+-N concentrations obtained with both methods correlated well with the NH4+-N concentrations measured on the effluent of the pilot plant using an on-line NH4+-N analyser. Contrary to most physical/chemical NH4+-N analysers, no sample pretreatment of the mixed liquor is needed for the measurements. It is shown in detail that interpretation of the titration curves yields information about the nitrification kinetics too, which can be an important advantage for process control purposes.

2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2007 ◽  
Vol 55 (8-9) ◽  
pp. 99-106 ◽  
Author(s):  
R. Hansen ◽  
T. Thøgersen ◽  
F. Rogalla

In the early 1990s, the Wastewater Treatment Plant (WWTP) of Frederikshavn, Denmark, was extended to meet new requirements for nutrient removal (8 mg/L TN, 1.5 mg TP/L) as well as to increase its average daily flow to 16,500 m3/d (4.5 MGD). As the most economical upgrade of the existing activated sludge (AS) plant, a parallel biological aerated filter (BAF) was selected, and started up in 1995. Running two full scale processes in parallel for over ten years on the same wastewater and treatment objectives enabled a direct comparison in relation to operating performance, costs and experience. Common pretreatment consists of screening, an aerated grit and grease removal and three primary settlers with chemical addition. The effluent is then pumped to the two parallel biological treatment stages, AS with recirculation and an upflow BAF with floating media. The wastewater is a mixture of industrial and domestic wastewater, with a dominant discharge of fish processing effluent which can amount to 50% of the flow. The maximum hydraulic load on the pretreatment section as a whole is 1,530 m3/h. Approximately 60% of the sewer system is combined with a total of 32 overflow structures. To avoid the direct discharge of combined sewer overflows into the receiving waters, the total hydraulic wet weather capacity of the plant is increased to 4,330 m3/h, or 6 times average flow. During rain, some of the raw sewage can be directed through a stormwater bypass to the BAF, which can be modified in its operation to accommodate various treatment needs:•either using simultaneous nitrification/denitrification in all filters with recirculation•introducing bottom aeration with full nitrification in some filters for storm treatment•and/or post-denitrification in one filter. After treatment, the wastewater is discharged to the Baltic Sea through a 500 m outfall. The BAF backwash sludge, approximately 1,900 m3 per 24 h in dry weather, is redirected to the AS plant. Primary settler sludge and the combined biosolids from the AS plant are anaerobically digested, with methane gas being used for generation of heat and power. On-line measurements for the parameters NO3, NO2, NH4, temperature as well as dissolved oxygen (DO) are used for control of aeration and external carbon source (methanol). Dosing of flocculants for P-removal is carried out based on laboratory analysis and jar tests. This paper discusses the experience gained from the plant operation during the last ten years, compiling comparative performance and cost data of the two processes, as well as their optimisation.


1999 ◽  
Vol 39 (4) ◽  
pp. 93-102 ◽  
Author(s):  
L. J. S. Lukasse ◽  
K. J. Keesman ◽  
A. Klapwijk ◽  
G. van Straten

Four control strategies for N-removal in alternating activated sludge plants (ASP's) are compared: 1. timer-based, 2. switching the aeration on/off when depletion of nitrate/ammonium is detected, 3. switching the aeration on/off when ammonium crosses an upper/lower-bound, 4. the newly developed adaptive receding horizon optimal controller (ARHOC) as presented in Lukasse et al. (1997). The comparison is made by simulating the controllers' application to an alternating continuously-mixed activated sludge reactor preceded by a small anoxic reactor for predenitrification. The biological processes in the reactors are modelled by the activated sludge model no. 1. Realistic influent patterns, measured at a full-scale wastewater treatment plant, are used. The results show that three totally different controllers (timer-based, NH4-bounds based and ARHOC) can achieve a more or less equal effluent quality, if tuned optimally. The difference mainly occurs in the sensitivity to suboptimal tunings. The timer-based strategy has a higher aeration demand. The sensitivity of the ARHOC controller to sub-optimal tuning, known measurement time delays and changing plant loads is significantly less than that of the other controllers. Also its tuning is more natural and explicit.


1992 ◽  
Vol 26 (5-6) ◽  
pp. 1315-1323 ◽  
Author(s):  
H. Aspegren ◽  
B. Andersson ◽  
U. Nyberg ◽  
J. la C. Jansen

Optimization of wastewater treatment plants with extensive phosphorus and nitrogen removal is complicated. The Klagshamn wastewater treatment plant in Sweden is operated with pre-precipitation of phosphorus with ferric chloride and denitrification with methanol as carbon source. An activated sludge process, operated with pre-precipitation and denitrification with external carbon source in a compartmentalized plant, requires only small tank volumes but increases the need for proper operation and optimization. On-line nitrogen, ammonia, and TOC sensors are used for a day-to-day control and optimization while mathematical modelling is used for long term strategic planning. The on-line measurements are further used as the basis for the modelling. TOC and ammonia sensors at the influent clearly identify typical and extreme loading variations and nitrate measurements in the activated sludge tanks and the effluent shows the dynamics of the processes. These measurements provide a basis for model calibration. In combination low residuals of nitrogen, phosphorus and organic matter can be achieved.


2002 ◽  
Vol 45 (4-5) ◽  
pp. 335-343 ◽  
Author(s):  
H. Spanjers ◽  
G.G. Patry ◽  
K.J. Keesman

This paper describes part of a project to develop a systematic approach to knowledge extraction from on-line respirometric measurements in support of wastewater treatment plant control and operation. The paper deals with the following issues: (1) test of the implementation of an automatic set-up consisting of a continuous laboratory respirometer integrated in a mobile trailer with sampling and dosing equipment, and data-acquisition and communication system; (2) assessment of activated sludge/sewage characteristics from sludge respirograms by model parameter estimation; (3) comparison of the parameter estimates with regular plant data and information obtained from supplementary wastewater respirograms. The paper describes the equipment and some of its measuring results from a period of one week at a large-scale wastewater treatment plant. The measurements were evaluated in terms of the common activated sludge modelling practice. The automatic set-up allowed reliable measurements during at least one week. The data were used to calibrate two different version of the model, and independent parameter estimates were obtained.


2001 ◽  
Vol 44 (2-3) ◽  
pp. 197-202 ◽  
Author(s):  
P. Chatellier ◽  
J. M. Audic

The capacity of an aeration system to transfer oxygen to a given activated sludge oxidation ditch is characterised by the αkLa parameter. This parameter is difficult to measure under normal plant working conditions. Usually this measurement involves off-gas techniques or static mass balance. Therefore an on-line technique has been developed and tested in order to evaluate αkLa. This technique deduces αkLa from a data analysis of low cost sensor measurement: two flow meters and one oxygen probe. It involves a dynamic mass balance applied to aeration cycles selected according to given criteria. This technique has been applied to a wastewater treatment plant during four years. Significant variations of the αkLa values have been detected while the number of blowers changes. This technique has been applied to another plant during two months.


2006 ◽  
Vol 54 (8) ◽  
pp. 101-109 ◽  
Author(s):  
G.A. Ekama ◽  
M.C. Wentzel ◽  
S.W. Sötemann

From an experimental and theoretical investigation of the continuity of influent inorganic suspended solids (ISS) along the links connecting the primary settling tank (PST), fully aerobic or N removal activated sludge (AS) and anaerobic and aerobic sludge digestion unit operations, it was found that the influent wastewater (fixed) ISS concentration is conserved through primary sludge anaerobic digestion, activated sludge and aerobic digestion unit operations. However, the measured ISS flux at different stages through a series of wastewater treatment plant (WWTP) unit operations is not equal to the influent ISS flux, because the ordinary heterotrophic organisms (OHO) biomass contributes to the ISS flux by differing amounts depending on the active fraction of the VSS solids at that stage.


2017 ◽  
Vol 76 (11) ◽  
pp. 2888-2894 ◽  
Author(s):  
Xiaolin Sheng ◽  
Rui Liu ◽  
Lujun Chen ◽  
Zihua Yin ◽  
Jianfeng Zhu

Abstract In this study, nitrifying bacteria were enriched in a membrane bioreactor (MBR, R1) and their bioaugmentation effectiveness was evaluated in another two MBRs (R2 and R3). Nitrifying activated sludge (NAS) with high nitrification activity of up to 3,000 mg-N/(L·d)−1 was successfully enriched in R1. The results showed that chemical oxygen demand concentration of 100–200 mg/L had no negative effect on NAS enrichment but reduced the ratio of bacterial nitrifiers. Moreover, the cell concentration of nitrifying bacteria in NAS, which was 3.1 × 1011 cells/L, was similar to that of the commercial bacterium agent. For the bioaugmentation test, the reactor inoculated with 14% NAS achieved a 23% higher NH4+-N removal efficiency than that of the uninoculated reactor. Along with the improvement of nitrification performance, the bacterial nitrifiers abundance and microbial richness remarkably increased after bioaugmentation. These results suggested that the MBR system could efficiently enrich nitrifying bacteria using organic carbon containing culture medium, and potentially act as a side-stream reactor to enhance the nitrification function of the wastewater treatment plant.


1992 ◽  
Vol 25 (6) ◽  
pp. 195-214 ◽  
Author(s):  
C. W. Randall ◽  
V. M. Pattarkine ◽  
S. A. McClintock

Nitrification kinetics as a function of mixed liquor temperature were compared for a conventional fully-aerobic activated sludge system and a system accomplishing biological nutrient removal (BNR) by incorporation of anaerobic and anoxic zones using the UCT configuration. The systems treated the same municipal wastewater and both had flow rates of 151 L/day. The nitrification rates were greater in the nutrient removal system compared to the conventional system as long as the aerobic MCRT was above the minimum for complete nitrification. It was concluded that BNR systems require less aerobic volume than fully aerobic systems to accomplish nitrification because the aerobic biomass concentration is greater in the BNR systems, particularly if the UCT configuration is used. Nonetheless, BNR systems require more total volume to accomplish complete nitrification than fully aerobic systems, and the volume differential increases as mixed liquor temperatures decrease.


Sign in / Sign up

Export Citation Format

Share Document