Model and Sensor Based Optimization of Nitrogen Removal at Klagshamn Wastewater Treatment Plant

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1315-1323 ◽  
Author(s):  
H. Aspegren ◽  
B. Andersson ◽  
U. Nyberg ◽  
J. la C. Jansen

Optimization of wastewater treatment plants with extensive phosphorus and nitrogen removal is complicated. The Klagshamn wastewater treatment plant in Sweden is operated with pre-precipitation of phosphorus with ferric chloride and denitrification with methanol as carbon source. An activated sludge process, operated with pre-precipitation and denitrification with external carbon source in a compartmentalized plant, requires only small tank volumes but increases the need for proper operation and optimization. On-line nitrogen, ammonia, and TOC sensors are used for a day-to-day control and optimization while mathematical modelling is used for long term strategic planning. The on-line measurements are further used as the basis for the modelling. TOC and ammonia sensors at the influent clearly identify typical and extreme loading variations and nitrate measurements in the activated sludge tanks and the effluent shows the dynamics of the processes. These measurements provide a basis for model calibration. In combination low residuals of nitrogen, phosphorus and organic matter can be achieved.

1992 ◽  
Vol 25 (4-5) ◽  
pp. 203-209 ◽  
Author(s):  
R. Kayser ◽  
G. Stobbe ◽  
M. Werner

At Wolfsburg for a load of 100,000 p.e., the step-feed activated sludge process for nitrogen removal is successfully in operation. Due to the high denitrification potential (BOD:TKN = 5:1) the effluent total nitrogen content can be kept below 10 mg l−1 N; furthermore by some enhanced biological phosphate removal about 80% phosphorus may be removed without any chemicals.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 5-12 ◽  
Author(s):  
E.v. Münch ◽  
K. Barr ◽  
S. Watts ◽  
J. Keller

The Oxley Creek wastewater treatment plant is a conventional 185,000 EP BOD removal activated sludge plant that is to be upgraded for nitrogen removal to protect its receiving water bodies, the Brisbane River and Moreton Bay. Suspended carrier technology is one possible way of upgrading this activated sludge wastewater treatment plant for nitrogen removal. Freely moving plastic media is added to the aeration zone, providing a growth platform for nitrifying bacteria and increasing the effective solids residence time (SRT). This paper presents the results from operating a pilot plant for 7 months at the Oxley Creek WWTP in Brisbane, Australia. Natrix Major 12/12 plastic media, developed by ANOX (Lund, Sweden), was trialed in the pilot plant. The pilot plant was operated with a mixed liquor suspended solids concentration of 1220 mg/L and a total hydraulic residence time of 5.4 hours, similar to the operating conditions in the full-scale Stage 1&2 works at the Oxley Creek WWTP. The plastic carriers were suspended in the last third of the bioreactor volume, which was aerated to a DO setpoint of 4.0 mg/L. The first third of the bioreactor volume was made anoxic and the second third served for carbon removal, being aerated to a DO setpoint of 0.5 mg/L. The results from the pilot plant indicate that an average effluent total inorganic nitrogen concentration (ammonia-N plus NOx−N) of less than 12 mg/L is possible. However, the effluent ammonia concentrations from the pilot plant showed large weekly fluctuations due to the intermittent operation of the sludge dewatering centrifuge returning significant ammonia loads to the plant on three days of the week. Optimising denitrification was carried out by lowering the DO concentration in the influent and in the carbon removal reactor. The results from the pilot plant study show that the Oxley Creek WWTP could be upgraded for nitrogen removal without additional tankage, using suspended carrier technology.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1286 ◽  
Author(s):  
Pedro Cisterna-Osorio ◽  
Patricia Arancibia-Avila

Fats and oils are the most common pollutants in wastewater, and are usually eliminated through physical processes in wastewater treatment plants, generating large amounts of fats and residual oils that are difficult to dispose of and handle. The degradation of fatty wastewater was studied in a real wastewater treatment plant and a laboratory scale treatment unit. The wastewater treatment plant, located in Chile, was designed for a population of 200,000 inhabitants. It includes an aerobic digester that receives fat and oils retained in a degreaser and treats the fats and oils together with biomass. The biodegradation of fats and oils was analyzed in both wastewater treatment systems. Key parameters were monitored such as the concentration of fats and oils in the influents and effluents, mass loading, and the efficiency of biodegradation. The mass loading range was similar in both wastewater treatment systems. In the experimental activated sludge plant, the biodegradation of fats and oils reached levels in the range of 64% to 75%. For the wastewater treatment plant with an aerobic digester, the levels of biodegradation of fats and oils ranged from 69% to 92%. Therefore, considering the efficiency of the elimination of fats and oils, the results indicated that physical treatment should be replaced with biological treatment so that the CO2 generated by the biodegradation will be incorporated into the carbon cycle and the mass of fats and oils in landfills will be reduced.


2020 ◽  
Vol 12 (9) ◽  
pp. 1461
Author(s):  
Jorge Sancho Martínez ◽  
Yadira Bajón Fernández ◽  
Paul Leinster ◽  
Mónica Rivas Casado

Wastewater treatment plants are essential for preserving the water quality of freshwater and marine ecosystems. It is estimated that, in the UK, as much as 11 billion liters of wastewater are treated on a daily basis. Effective and efficient treatment of wastewater requires treatment plants to be maintained in good condition. Recent studies have highlighted the potential of unmanned aircraft systems (UASs) and image processing to be used in autonomous and automated monitoring systems. However, the combined use of UASs and image processing for wastewater treatment plant inspections has not yet been tested. This paper presents a novel image processing-UAS framework for the identification of failures in trickling filters and activated sludge facilities. The results show that the proposed framework has an accuracy of 95% in the detection of failures in activated sludge assets, with the accuracy ranging between 55% and 81% for trickling filters. These results are promising and they highlight the potential use of the technology for the inspection of wastewater treatment plants.


2002 ◽  
Vol 45 (4-5) ◽  
pp. 335-343 ◽  
Author(s):  
H. Spanjers ◽  
G.G. Patry ◽  
K.J. Keesman

This paper describes part of a project to develop a systematic approach to knowledge extraction from on-line respirometric measurements in support of wastewater treatment plant control and operation. The paper deals with the following issues: (1) test of the implementation of an automatic set-up consisting of a continuous laboratory respirometer integrated in a mobile trailer with sampling and dosing equipment, and data-acquisition and communication system; (2) assessment of activated sludge/sewage characteristics from sludge respirograms by model parameter estimation; (3) comparison of the parameter estimates with regular plant data and information obtained from supplementary wastewater respirograms. The paper describes the equipment and some of its measuring results from a period of one week at a large-scale wastewater treatment plant. The measurements were evaluated in terms of the common activated sludge modelling practice. The automatic set-up allowed reliable measurements during at least one week. The data were used to calibrate two different version of the model, and independent parameter estimates were obtained.


1999 ◽  
Vol 39 (2) ◽  
pp. 145-150
Author(s):  
T. Dormoy ◽  
B. Tisserand ◽  
L. Herremans

The new regulations require an increased amount of treatment of stormwater and a reduction of pollution loads discharged into the natural surroundings to be considered. Drainage systems therefore and particularly wastewater treatment plants should be sized correctly to cope with these peaks. Using a simulation software of wastewater treatment plant with activated sludge, such as SIMBAD, enables us to check that planned structures are appropriate in relation to the effluent quality requirements laid down, and to fix the most appropriate operating procedures. Operating constraints on a plant for treating stormwater are not negligible. It is advisable to allow for increased sludge production, O2 requirements and also sludge quality (fermentability).


2014 ◽  
Vol 69 (5) ◽  
pp. 1074-1079 ◽  
Author(s):  
Kris De Gussem ◽  
Alessio Fenu ◽  
Tom Wambecq ◽  
Marjoleine Weemaes

This work provides a case study on how activated sludge modelling and computational fluid dynamics (CFD) can help to optimize the energy consumption of a treatment plant that is already equipped with an advanced control based on online nutrient measurements. Currently, aeration basins on wastewater treatment plant Antwerp-South are operated sequentially while flow direction and point of inflow and outflow vary as a function of time. Activated sludge modelling shows that switching from the existing alternating flow based control to a simultaneous parallel feeding of all aeration tanks saves 1.3% energy. CFD calculations also illustrate that the water velocity is still sufficient if some impellers in the aeration basins are shutdown. The simulations of the Activated Sludge Model No. 2d indicate that the coupling of the aeration control with the impeller control, and automatically switching off some impellers when the aeration is inactive, can save 2.2 to 3.3% of energy without affecting the nutrient removal efficiency. On the other hand, all impellers are needed when the aeration is active to distribute the oxygen.


2006 ◽  
Vol 54 (10) ◽  
pp. 79-86 ◽  
Author(s):  
G. Wandl ◽  
H. Kroiss ◽  
K. Svardal

Two-stage activated sludge plants succeed in stable treatment efficiency concerning carbon removal and nitrification with far less reactor tank volume than conventional single stage systems. In case of large treatment plants this fact is of great economic relevance. Because of the very small specific volume of these two-stage treatment plants in comparison with low loaded single-stage plants, internal cycles have to be applied to ensure sufficient nitrogen removal. Due to these internal cycles two stage activated sludge plants offer many possibilities in terms of process management which results in new process optimisation procedures as compared to conventional single-stage nutrient removal treatment plants. The proposed extension concept for the Main Treatment Plant of Vienna was validated with pilot plant investigations especially with regard to nitrogen removal where it proved to comply with the legal requirements. The operation of the treatment plant can easily be adapted to changes in temperature and sludge volume index occurring in full scale practice. Sludge retention time and aerobic volume in the second stage are controlled in order to secure sufficient nitrification capacity and to optimise nitrogen removal by means of the variation of the loading conditions for the two stages. The investigations confirmed that the specific two-stage activated sludge concept applied in Vienna is an economically advantageous alternative for large wastewater treatment plants with stringent requirements for nitrification and nutrient removal.


Sign in / Sign up

Export Citation Format

Share Document