Effect of 1,1,2,2-Tetrachloroethane on the Performance of Upflow Anaerobic Sludge Bed (UASB) Reactors

1999 ◽  
Vol 40 (8) ◽  
pp. 153-159
Author(s):  
M. Navarrete ◽  
N. Rodríguez ◽  
R. Amils ◽  
J. L. Sanz

Chlorinated aliphatic hydrocarbons (CAH) are important environmental pollutants since they are industrially used for a wide variety of applications. Chlorinated hydrocarbons are cited as important contributors to the inhibition of anaerobic digestion. In this work, the effect of 1,1,2,2-tetrachloroethane (TCE) on the performance of upflow anaerobic sludge bed (UASB) reactors fed with sucrose synthetic wastewater has been studied. According to the results obtained it can be concluded the possibility to use UASB reactors with granular sludge to treat industrial wastewaters with a continuous content of TCE up to a concentration of 130 mg/l or with incidental punctual discharges of high concentration of the toxicant up to 400 mg/l. In all cases in which the activity of the reactor was inhibited a fast recuperation was observed.

1991 ◽  
Vol 24 (1) ◽  
pp. 69-74 ◽  
Author(s):  
J. Rintala

Anaerobic mesophilic treatment of synthetic (a mixture of acetate and methanol) and thermomechanical pulping (TMP) wastewater was studied in laboratory-scale upflow anaerobic sludge blanket (UASB) reactors and filters with emphasis on the process start-up. The reactors were inoculated with nongranular sludge. The start-up of mesophilic and thermophilic processes inoculated with mesophilic granular sludge was investigated in UASB reactors fed with diluted vinasse. The start-up proceeded faster in the filters than in the UASB reactors with TMP and synthetic wastewater. Loading rates of over 15 kgCODm−3d−1 with 50-60 % COD removal efficiencies were achieved in 10 days in the mesophilic and in 50 days in the thermophilic UASB reactor treating vinasse. The results show that high-rate anaerobic treatment can be applied to different types of industrial wastewaters under varying conditions.


2020 ◽  
Vol 15 (2) ◽  
pp. 248-260
Author(s):  
M. Basitere ◽  
M. Njoya ◽  
S. K. O. Ntwampe ◽  
M. S. Sheldon

Abstract The process of anaerobic digestion has been and still remains the most efficient, cost effective and environmentally benign treatment process for poultry slaughterhouse wastewater (PSW). The PSW is characterized by a high concentration in chemical oxygen demand (COD), biological oxygen demand (BOD) and fats, oil including grease (FOG). The reactor configuration influences the performance of such anaerobic systems in the treatment of such oily wastewater. The up-flow reactor configuration provided by the Up-flow Anaerobic Sludge Blanket (UASB) Bioreactor or the Expanded Granular Sludge Bioreactor (EGSB) are highly dependent on up-flow velocity, which often contributes to periodical sludge washout during the treatment of PSW with high FOG and total suspended solids (TSS) concentration, resulting in poor reactor performance in comparison with downflow reactors such as the Static Granular Bed Reactor (SGBR), which achieves high organic load removal efficiency particularly when treating PSW due to its ability to retain sludge granules and solidified residue within the reactor. The washout of the sludge results from sludge flotation, which is induced by the inhibition of the anaerobic granular biomass by the accumulation of long chain fatty acids (LCFAs) from poor hydrolysis. The aim of this review is to highlight reactor configuration deficiencies, and to elaborate on the advantages of using anaerobic digestion for the treatment of FOG-laden PSW, with a focus on reactor performance. Additionally, a comparative analysis between up-flow reactors, such as the UASB including EGSB, and downflow reactors, such as SGBR, was performed.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 325-332 ◽  
Author(s):  
Raghida Lepistö ◽  
Jukka Rintala

The study focused on the effluent quality and sludge characteristics during the start-up and operation of extreme thermophilic (70 to 80°C) upflow anaerobic sludge bed (UASB) reactors, inoculated with mesophilic and thermophilic granular sludge and fed with acetate, volatile fatty acids (VFA), and thermomechanical pulping (TMP) whitewater. Low effluent quality and long start-up periods were observed during the start-up of the 70 to 76°C, VFA-fed UASB reactors inoculated with mesophilic granulae, while better effluent quality and considerably shorter start-up periods were observed when thermophilic (55/70°C) inocula were used. With VFA feed, a significant amount of acetate was removed at 70°C and even at 80°C, while propionate removal was negligible. With TMP whitewater feed, low VFA effluent concentration was obtained at 70°C. The volatile solids (VS) and the VS/total solids (TS) content of the sludge decreased significantly during the first 2–3 months of operation when mesophilic inocula were used. The initial specific methanogenic activity (ISMA) of the extreme thermophilic sludge decreased with increasing temperature and was slightly higher on glucose than on acetate. At 70 to 80°C, various rod-like bacteria were dispersed through the granulae in either individual or in low density micro colonies surrounded with a varying degree of precipitates.


2004 ◽  
Vol 49 (11-12) ◽  
pp. 69-76 ◽  
Author(s):  
J.E. Schmidt ◽  
D.J. Batstone ◽  
I. Angelidaki

Upflow anaerobic sludge blanket reactors may offer a number of advantages over conventional mixed-tank, SBR, and biofilm reactors, including high space-loading, low footprint, and resistance to shocks and toxins. In this study, we assessed the use of upflow anaerobic sludge blanket (UASB) reactor technology as applied to anaerobic ammonia removal, or Anammox. Four 200 ml UASB reactors were inoculated with 50% (by volume) anaerobic granular sludge and 50% flocular sludge from different sources (all with the potential for containing Anammox organisms). Tools used to assess the reactors included basic analyses, fluorescent in-situ hybridisation, and mathematical modelling, with statistical non-linear parameter estimation. Two of the reactors showed statistically identical Anammox activity (i.e., identical kinetic parameters), with good ammonia and nitrite removal (0.14 kgNHx m-3 reactor day-1, with 99% ammonia removal). The third reactor also demonstrated significant Anammox activity, but with poor identifiability of parameters. The fourth reactor had no statistical Anammox activity. Modelling indicated that poor identifiability and performance in the third and fourth reactors were related to an excess of reduced carbon, probably originating in the inoculum. Accumulation of Anammox organisms was confirmed both by a volume loading much lower than the growth rate, and response to a probe specific for organisms previously reported to mediate Anammox processes. Overall, the UASB reactors were effective as Anammox systems, and identifiability of the systems was good, and repeatable (even compared to a previous study in a rotating biological contactor). This indicates that operation, design, and analysis of Anammox UASB reactors specifically, and Anammox systems in general, are reliable and portable, and that UASB systems are an appropriate technology for this process.


2013 ◽  
Vol 16 (1) ◽  
pp. 40-48
Author(s):  
Phuong Thi Thanh Nguyen ◽  
Phuoc Van Nguyen ◽  
Anh Cam Thieu

Aerobic granular sludge has attracted extensive interest of researchers since the 90s due to the advantages of aerobic granules such as good settling ability, high biomass accumulation, being resistant to high loads and being less affected by toxic substances. Studies, however, which have mainly been carried out on synthetic wastewater, cannot fully evaluate the actual ability of aerobic granules. Study on aerobic granular sludge was performed in sequencing batch reactors, using seeding sludge taken from anaerobic sludge and tapioca wastewater as a substrates. After 11 weeks of operation, the granules reached the stable diameter of 2- 3 mm at 3.7 kgCOD/m3.day organic loading rate. At high organic loads, in range of 1.6 - 5 kgCOD/m3.day, granules could treat effectively COD, N, P with performance of 93 – 97%; 65 – 79% and 80 – 95%, respectively.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


1994 ◽  
Vol 30 (12) ◽  
pp. 43-53 ◽  
Author(s):  
J. Thaveesri ◽  
K. Gernaey ◽  
B. Kaonga ◽  
G. Boucneau ◽  
W. Verstraete

Laboratory studies of in-reactor granular-sludge yield (Ygran) were carried out to investigate the effect of substrates rich in proteins. Both lab-scale upflow anaerobic sludge blanket (UASB) and shake-flask systems were used to monitor the behaviour of the sludge. Influent based on molasses with a COD to N ratio of 100:2.5-3.0 gave good Ygran; increasing substitution of the carbohydrate COD by protein COD resulted in a deterioration of the sludge characteristics. The negative effects appear to be related to the protein rather than to the NH4+ formed. Of the various environmental parameters examined, the surface tension of the mixed liquor was the main deviating factor. At a proper range of oxygenation i.e., by means of monitoring of both the input COD to oxygen ratio (gCOD gO2−1) and the daily oxygen loading rate (mgO2 gVSS−1.d−1), the UASB reactors treating the nitrogen-rich wastewater showed enhanced Ygran with only a minor reduction in methanogenesis. A range of working conditions in which this principle can be applied to decrease fluffy growth to the advantage of granular increase is proposed.


2019 ◽  
Vol 10 (1) ◽  
pp. 136 ◽  
Author(s):  
Fasil Ayelegn Tassew ◽  
Wenche Hennie Bergland ◽  
Carlos Dinamarca ◽  
Rune Bakke

Influences of temperature (25–35 °C) and substrate particulate content (3.0–9.4 g total suspended solids (TSS)/L) on granular sludge bed anaerobic digestion (AD) were analyzed in lab-scale reactors using manure as a substrate and through modeling. Two particle levels were tested using raw (RF) and centrifuged (CF) swine manure slurries, fed into a 1.3-L lab-scale up-flow anaerobic sludge bed reactor (UASB) at temperatures of 25 °C and 35 °C. Biogas production increased with temperature in both high- and low-particle-content substrates; however, the temperature effect was stronger on high-particle-content substrate. RF and CF produced a comparable amount of biogas at 25 °C, suggesting that biogas at this temperature came mainly from the digestion of small particles and soluble components present in similar quantities in both substrates. At 35 °C, RF showed significantly higher biogas production than CF, which was attributed to increased (temperature-dependent) disintegration of larger solid particulates. Anaerobic Digestion Model No.1 (ADM1) based modeling was carried out by separating particulates into fast and slow disintegrating fractions and introducing temperature-dependent disintegration constants. Simulations gave a better fit for the experimental data than the conventional ADM1 model.


1997 ◽  
Vol 36 (6-7) ◽  
pp. 399-406 ◽  
Author(s):  
Tsuyoshi Imai ◽  
Masao Ukita ◽  
Jun Liu ◽  
Masahiko Sekine ◽  
Hiroshi Nakanishi ◽  
...  

We have developed a new approach to enhance granulation by adding water absorbing polymer (WAP) particles into the inoculated digested sludge. In this study, the effect of adding WAP on formation of anaerobic granular sludge was evaluated in lab-scale UASB reactors using two typical synthetic wastewater, i.e. glucose or volatile fatty acid (VFA) mixture solution. In addition, side by side with the lab-scale experiment, a pilot-scale experiment using the VFA mixture was carried out to evaluate the availability of accelerated start-up by adding WAP. The development of granular sludge was significantly enhanced by adding WAP. Granules developed on glucose and VFAs had high methanogenic activities and good settleability. From results of lab-scale experiment, the recommended dosage of WAP was about 750 mg/l of reactor volume. The results, pilot-scale experiment, indicated the availability of accelerated start-up by adding WAP.


2002 ◽  
Vol 45 (10) ◽  
pp. 213-218 ◽  
Author(s):  
I. Angelidaki ◽  
B.K. Ahring ◽  
H. Deng ◽  
J.E. Schmidt

Combined anaerobic digestion of olive oil mill effluent (OME) with swine manure, was investigated. In batch experiments was shown that for anaerobic degradation of OME alone nitrogen addition was needed. A COD:N ratio in the range of 65:1 to 126:1 was necessary for the optimal degradation process. Furthermore, it was found that methane productions rates during digestion of either swine manure alone or OME alone were much lower than the rates achieved when OME and manure were digested together. Admixing OME with manure at a concentration of 5 to 10% OME resulted in the highest methane production rates. Using upflow anaerobic sludge blanket (UASB) reactors, it was shown that codigestion of OME with swine manure (up to 50% OME) was successful with a COD reduction up to 75%. The process was adapted for degradation of OME with stepwise increase of the OME load to the UASB reactor. The results showed that the high content of ammonia in swine manure, together with content of other nutrients, make it possible to degrade OME without addition of external alkalinity and without addition of external nitrogen source. Anaerobic treatment of OME in UASB reactors resulted in reduction of simple phenolic compounds such as mequinol, phenyl ethyl alcohol and ethyl methyl phenol. After anaerobic treatment the concentration of these compounds was reduced between 75 and 100%. However, the concentration of some degradation products such as methyl phenol and ethyl phenol were detected in significantly higher concentrations after treatment, indicating that the process has to be further optimised to achieve satisfactory removal of all xenobiotic compounds.


Sign in / Sign up

Export Citation Format

Share Document