Combined hydraulic and biological modelling and full-scale validation of SBR process

2002 ◽  
Vol 45 (6) ◽  
pp. 219-228 ◽  
Author(s):  
J. Keller ◽  
Z. Yuan

The biological reactions during the settling and decant periods of Sequencing Batch Reactors (SBRs) are generally ignored as they are not easily measured or described by modelling approaches. However, important processes are taking place, and in particular when the influent is fed into the bottom of the reactor at the same time (one of the main features of the UniFed process), the inclusion of these stages is crucial for accurate process predictions. Due to the vertical stratification of both liquid and solid components, a one-dimensional hydraulic model is combined with a modified ASM 2d biological model to allow the prediction of settling velocity, sludge concentration, soluble components and biological processes during the non-mixed periods of the SBR. The model is calibrated on a full-scale UniFed SBR system with tracer breakthrough tests, depth profiles of particulate and soluble compounds and measurements of the key components during the mixed aerobic period. This model is then validated against results from an independent experimental period with considerably different operating parameters. In both cases, the model is able to accurately predict the stratification and most of the biological reactions occurring in the sludge blanket and the supernatant during the non-mixed periods. Together with a correct description of the mixed aerobic period, a good prediction of the overall SBR performance can be achieved.

2004 ◽  
Vol 50 (10) ◽  
pp. 115-120 ◽  
Author(s):  
M. Peters ◽  
M. Newland ◽  
T. Seviour ◽  
T. Broom ◽  
T. Bridle

The efficacy of sequencing batch reactors (SBRs) to provide high levels of biological nutrient removal has been extensively demonstrated around the world. Environmental Solutions International (ESI) has now constructed over 20 full-scale SBR plants and has confirmed that nutrient removal is enhanced via the process of simultaneous nitrification and denitrification. Over 18 months of operational data from two plants, operating in distinctly different catchments, processing an average of between 2,000 and 2,500 m3/d of wastewater, has clearly shown the efficacy and robustness of the ESI SBR-BNR process. Median effluent total nitrogen and total phosphorus values of 3 mg/L and <0.6 mg/L, respectively, were demonstrated over the 18-month period. This high level of nutrient removal is attributed to the design of the bio-selector which maximises carbon storage for the subsequent denitrification reactions, the effective aeration control which ensures no over-aeration during the air-on cycle as well as the level of operational control provided at these two plants.


2020 ◽  
Vol 81 (2) ◽  
pp. 333-344
Author(s):  
Jianfeng Wen ◽  
Mark W. LeChevallier ◽  
Wendong Tao

Abstract Simultaneous nitrification and denitrification under low dissolved oxygen conditions is an energy-saving modification of the activated sludge process to achieve efficient nitrogen removal. Geographically distinct full-scale treatment plants are excellent platforms to address the links of microbial community with operating parameters. Mixed liquor samples were collected from a sequencing batch reactor plant, oxidation ditch plant, and step-feed activated sludge plant. Next-Generation Sequencing of the samples showed that the microbial communities were similar at the phylum level among the plants, being dominated by Proteobacteria. Microbial composition of functional groups was similar between the react fill and react phases of the sequencing batch reactors, among four sequencing batch reactors, and among four oxidation ditches. Nitrospira was the only identified genus of autotropic nitrifying bacteria with a relative abundance of 2.2–2.5% in the oxidation ditches and 0.4–0.7% at the other plants. Heterotrophic nitrifying–aerobic denitrifying bacteria were dominated by Dechloromonas with a relative abundance of 0.4–1.0%. Microbial community composition and nitrogen removal mechanisms were related to overall level and local zonation of dissolved oxygen, mixed liquor suspended solids concentration, nitrogen and organic loadings, and solids retention time. Low dissolved oxygen and low organic and nitrogen loadings favored growth of Nitrospira.


2011 ◽  
Vol 45 (20) ◽  
pp. 8794-8803 ◽  
Author(s):  
Simon J. McIlroy ◽  
Lachlan B. M. Speirs ◽  
Joseph Tucci ◽  
Robert J. Seviour

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 646 ◽  
Author(s):  
Massimo Blonda ◽  
Angelantonio Calabrese ◽  
Raffaele Palumbo ◽  
Elvira Giorgio

Sulphide was adopted as odorous compound in a simulation of AS Diffusion, an interesting process to treat odors at wastewater treatment plants by diffusing odorous air into aerobic basins. Its behaviour were experimentally evaluated along with its effects on the biomass and the biological processes supposed by some author in an AS diffusion test. Two bench scale sequencing batch reactors (SBRs) were fed in parallel on real primary sewage and monitored after adding increasing concentrations of sulphide to one of them. In this reactor, an average sulphide removal of 94% was measured. Microbial biochemical activity and composition did not show relevant variations after the addition of sulphide, and the good features of activated sludge flocs were maintained also in terms of sludge settleability.


2008 ◽  
Vol 58 (2) ◽  
pp. 345-350 ◽  
Author(s):  
P. Schwitalla ◽  
A. Mennerich ◽  
U. Austermann-Haun ◽  
A. Müller ◽  
C. Dorninger ◽  
...  

Significant NH4-N balance deficits were found during the measurement campaigns for the data collection for dynamic simulation studies at five full-scale sequencing batch reactor (SBR) waste water treatment plants (WWTPs), as well as during subsequent calibrations at the investigated plants. Subsequent lab scale investigations showed high evidence for dynamic, cycle- specific NH4+ ad-/desorption to the activated flocs as one reason for this balance deficit. This specific dynamic was investigated at five full-scale SBR plants for the search of the general causing mechanisms. The general mechanism found was a NH4+ desorption from the activated flocs at the end of the nitrification phase with subsequent nitrification and a chemical NH4+ adsorption at the flocs in the course of the filling phases. This NH4+ ad-/desorption corresponds to an antiparallel K+ ad/-desorption. One reasonable full-scale application was investigated at three SBR plants, a controlled filling phase at the beginning of the sedimentation phase. The results indicate that this kind of filling event must be specifically hydraulic controlled and optimised in order to prevent too high waste water break through into the clear water phase, which will subsequently be discarded.


2016 ◽  
Vol 15 (11) ◽  
pp. 2529-2535
Author(s):  
Mohammad Reza Alavi Moghaddam ◽  
Mohammad Hakimelahi ◽  
Seyed Hossein Hashemi

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Nur Syamimi Zaidi ◽  
Johan Sohaili ◽  
Khalida Muda ◽  
Mika Sillanpää ◽  
Norelyza Hussein

AbstractLow condition of dissolved oxygen (DO) is commonly associated with sludge bulking problem that was able to disrupt the efficiency of wastewater treatment performances. Relatively, very little attention was paid to the possibility of applying magnetic field in controlling the bulking problem. Hence, this study aims to investigate the performance of magnetic field on biomass properties and its effect on biodegradation under low condition of DO. Two continuous laboratory-scale sequencing batch reactors—Reactor A (SBRA) and Reactor B (SBRB)—were setup. SBRA was equipped with the magnetic device to exhibit magnetic field of 88 mT, while SBRB acted as a control system. The results showed that the biomass concentration in SBRA was higher compared to SBRB. High biomass concentration in SBRA resulted to better settleability with mean SVI of less than 30 mL/g. SBRA also showed consistently high removal performances of organic and inorganic contents compared to SBRB. These observations confirmed that the magnetic field was able to enhance the biomass properties, which further enhance the biodegradation ability of the aerobic bacteria under low DO condition. This also indicates that under the sludge bulking circumstances, the use of magnetic field stands a great chance in maintaining high biodegradation of the treatment system.


2021 ◽  
Vol 96 ◽  
pp. 29-43
Author(s):  
Dingena Schott ◽  
Javad Mohajeri ◽  
Jovana Jovanova ◽  
Stef Lommen ◽  
Wilbert de Kluijver

Author(s):  
Hussain Aqeel ◽  
Mahendran Basuvaraj ◽  
Steven N. Liss

BNR granules rich in amyloid adhesins and denitrifying bacteria were formed in the SBRs that were operated with extended anoxic conditions.


Sign in / Sign up

Export Citation Format

Share Document