Treatment of fish processing wastewater in a one- or two-step upflow anaerobic sludge blanket (UASB) reactor

2002 ◽  
Vol 45 (10) ◽  
pp. 207-212 ◽  
Author(s):  
A. Palenzuela-Rollon ◽  
G. Zeeman ◽  
H.J. Lubberding ◽  
G. Lettinga ◽  
G.J. Alaerts

The performance of one-step UASB reactors treating fish processing wastewater of different lipid levels was determined using artificially generated influent simulating that of the canning of sardines and tuna. The organic loading rates (OLR) and the hydraulic retention times (HRT) were 5–8 g COD.L−1.d−1 and 11–12 hours, respectively. In treating a wastewater that contains 3–4 g.L−1 total COD of which 5–9% was lipids, the COD removal and conversion to methane were ca.78% and 61%, respectively. In treating a wastewater with a higher lipid content (ca. 47% of the total COD), the total COD removed and converted to methane were 92% and 47%, respectively. A considerable part of the influent total COD was removed via adsorption on reactor surfaces and sludge particles. The adsorption of lipids on sludge particles threatens the stability of the UASB operation. Thus, the performance of a first-step UASB reactor in removing suspended solids (SS) from a “high-lipid” wastewater was also determined in this study.

2001 ◽  
Vol 44 (4) ◽  
pp. 79-82 ◽  
Author(s):  
L. F. Lopes ◽  
P. R. Koetz ◽  
M. S. Santos

Parboiled rice industry is one of main food industries in the south of Brazil. The main parts of the processing are the humidification and gelatinization of the grain. This procedure increases the productivity and nutritive and cooking values of the product. Some of these industries in the region utilize upflow anaerobic sludge blanket (UASB) reactors as a biological treatment for carbon removal. For nitrogen removal, the proposed system aims to eliminate an extra denitrification reactor, making this step in the top of the UASB, an anoxic zone of the reactor. Nitrification was performed in aerated mixed reactor of 3,6 L. A fraction of the NR was recycled in the top of UASB reactor above the sludge blanket. Recycled ratio varied from 0; 1:0.5; 1:1.0; to 1:1.5. The maximum removal efficiency of NTK was 80%. The results confirm the viability of the proposed system for denitrification.


2015 ◽  
Vol 72 (11) ◽  
pp. 2034-2044 ◽  
Author(s):  
Rosa Elena Yaya Beas ◽  
Katarzyna Kujawa-Roeleveld ◽  
Jules B. van Lier ◽  
Grietje Zeeman

This research was conducted to study the faecal coliforms removal capacity of downflow hanging sponge (DHS) reactors as a post-treatment for an upflow anaerobic sludge blanket (UASB) reactor. Three long-term continuous laboratory-scale DHS reactors, i.e. a reactor with cube type sponges without recirculation, a similar one with recirculation and a reactor with curtain type sponges, were studied. The porosities of the applied medium were 91%, 87% and 47% respectively. The organic loading rates were 0.86 kgCOD m−3 d−1, 0.53 kgCOD m−3 d−1 and 0.24 kgCOD m−3 d−1 correspondingly at hydraulic loading rates of 1.92 m3 m−2 d−1, 2.97 m3 m−2 d−1 and 1.32 m3 m−2 d−1, respectively (COD: chemical oxygen demand). The corresponding averages for faecal coliform removal were 99.997%, 99.919% and 92.121% respectively. The 1989 WHO guidelines standards, in terms of faecal coliform content for unrestricted irrigation (category A), was achieved with the effluent of the cube type DHS (G1) without recirculation. Restricted irrigation, category B and C, is assigned to the effluent of the cube type with recirculation and the curtain type, respectively. Particularly for organic compounds, the effluent of evaluated DHS reactors complies with USEPA standards for irrigation of so called non-food crops like pasture for milking animals, fodder, fibre, and seed crops.


1995 ◽  
Vol 31 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Nina Christiansen ◽  
Hanne V. Hendriksen ◽  
Kimmo T. Järvinen ◽  
Birgitte K. Ahring

Data on anaerobic degradation of chloroaromatic compounds in Upflow Anaerobic Sludge Blanket Reactors (UASB-reactor) are presented and compared. Special attention is given to the metabolic pathways for degradation of chlorinated phenols by granular sludge. Results indicate that PCP can be degraded in UASB-reactors via stepwise dechlorination to phenol. Phenol will subsequently be converted to benzoate before ring cleavage. Dechlorination proceeds via different pathways dependent upon the inocula used. Results are further presented on the design of special metabolic pathways in granules which do not possess this activity using the dechlorinating organism, Desulfomonile tiedjei. Additionally, it is shown that it is possible to immobilize Dechlorosporium hafniense, a newly isolated dechlorinating anaerobe, into granular sludge, thereby introducing an ability not previously present in the granules.


2019 ◽  
Vol 79 (12) ◽  
pp. 2251-2259 ◽  
Author(s):  
M. Esparza-Soto ◽  
A. Jacobo-López ◽  
M. Lucero-Chávez ◽  
C. Fall

Abstract The objective of the present study was to determine the optimum operating temperature of laboratory-scale upflow anaerobic sludge blanket (UASB) reactors during the treatment of a chocolate-processing industry wastewater at medium applied organic loading rates (OLRappl). Four UASB reactors were operated at different temperature (15, 20, 25 and 30 °C) and three OLRappl (2, 4 and 6 kg soluble chemical oxygen demand (CODs)/(m3 d)). The flowrate and the hydraulic retention time were constant (11.5 L/d and 6 h, respectively). The monitored parameters were pH, temperature, CODs, and total and volatile suspended solids. The CODs removal efficiency (RE) and biogas production rate (BPR) were calculated. The 15 °C UASB reactor had the lowest RE (39 to 78%) due to the low operating temperature. Regardless of the OLRappl, the RE of the 20, 25 and 30 °C reactors was high and similar to each other (between 88 and 94%). The BPR of the four UASB reactors had the same behaviour as the RE (BPR of 15 °C: 0.3 to 0.5 Lbiogas/(Lreactor d) (Lb/(Lr d)) and BPR of 20, 25 and 30 °C: 0.5 to 1.9 Lb/(Lr d)).


2008 ◽  
Vol 58 (1) ◽  
pp. 225-232 ◽  
Author(s):  
A. S. Shanmugam ◽  
J. C. Akunna

Anaerobic technologies have proved successful in the treatment of various high strength wastewaters with perceptible advantages over aerobic systems. The applicability of anaerobic processes to treat low strength wastewaters has been increasing with the evolution of high-rate reactors capable of achieving high sludge retention time (SRT) when operating at low HRT. However, the performance of these systems can be affected by high variations in flow and wastewater composition. This paper reports on the comparative study carried out with two such high rate reactors systems to evaluate their performances when used for the treatment of low strength wastewaters at high hydraulic rates. One of the two systems is the most commonly used upflow anaerobic sludge blanket (UASB) reactor in which all reactions occur within a single vessel. The other is the granular bed baffled reactor (GRABBR) that encourages different stages of anaerobic digestion in separate vessels longitudinally across the reactor. The reactors, with equal capacity of 10 litres, were subjected to increasing organic loading rates (OLRs) and hydraulic retention times (HRTs) of up to 60 kg COD m−3 d−1 and 1 h respectively. Results show that the GRABBR has greater processes stability at relatively low HRTs, whilst the UASB seems to be better equipped to cope with organic overloads or shockloads. The study also shows that the GRABBR enables the harvesting of biogas with greater energetic value and hence greater re-use potential than the UASB. Biogas of up to 86% methane content is obtainable with GRABBR treating low strength wastewaters.


2009 ◽  
Vol 59 (4) ◽  
pp. 833-837 ◽  
Author(s):  
Chuan Chen ◽  
Aijie Wang ◽  
Nanqi Ren ◽  
Xuliang Deng ◽  
Duu-Jong Lee

Denitrifying sulfide removal (DSR) process incorporates interactions between autotrophic and heterotrophic denitrifiers and reveals difficulty to achieve high removal rate of nitrogen and sulfur in practice. We compared the DSR performance of an expanded granular sludge bed (EGSB) reactor and an upflow anaerobic sludge blanket (UASB) reactor, both fed with wastewaters comprising sulfide, nitrate and acetate. The EGSB reactor can sustain at higher loading rates than UASB reactor, probably owing to the less elemental sulfur production rate for the latter in operation.


2011 ◽  
Vol 64 (3) ◽  
pp. 610-617 ◽  
Author(s):  
Tarek Elmitwalli ◽  
Ralf Otterpohl

The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14–25 °C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 °C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from ‘Flintenbreite’ settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 °C, total chemical oxygen demand (CODt) removal of 52–64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31–41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22–36 and 10–24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31–64%) than the septic tank (11–14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20–30 °C, while a HRT of 12–24 h can be applied at temperature lower than 20 °C.


1986 ◽  
Vol 18 (12) ◽  
pp. 55-69 ◽  
Author(s):  
M. E. Souza

This paper describes and discusses the principal ideas and parameters related to the application, design and operation of wastewater treatment systems using the upflow anaerobic sludge blanket reactor (UASB). The differences in the process brought about by the high or low concentration of organic material in the wastewater to be treated are pointed out in each consideration. The purpose of this paper is to make the development of simple, but safe and efficient UASB reactor treatment units, by technicians not necessarily highly specialized in the subject, possible. It also attempts to point out problems which are not yet completely solved in order to help in the preparation of future research and development plans. A number of possible questions that deal with the following subjects are discussed:–types of waste which can be treated by the UASB reactor–concentrated wastes (for example, stillage from sugar-cane) and diluted wastes (for example, domestic sewage)–necessity of pre- and post-treatment–temperature–shape and dimensions of the reactor–criteria and details for design–start-up, operation and control of the unit–forecasts of efficiency, costs, etc.


2013 ◽  
Vol 33 (4) ◽  
pp. 808-819 ◽  
Author(s):  
Marcelo Bruno ◽  
Roberto A. de Oliveira

In this study it was evaluated the efficiency of the treatment of wet-processed coffee wastewater in upflow anaerobic sludge blanket (UASB) reactors in two stages, in bench scale, followed by post-treatment with activated sludge in batch. The first UASB reactor was submitted to an hydraulic retention time (HRT) of 6.2 d and organic loading rates (OLR) of 2.3 and 4.5g CODtotal (L d)-1, and the second UASB reactor to HRT of 3.1 d with OLR of 0.4 and 1.4g CODtotal (L d)-1. The average values of the affluent CODtotal increased from 13,891 to 27,926mg L-1 and the average efficiencies of removal of the CODtotal decreased from 95 to 91%, respectively, in the UASB reactors in two stages. The volumetric methane production increased from 0.274 to 0.323L CH4 (L reactor d)-1 with increment in the OLR. The average concentrations of total phenols in the affluent were of 48 and 163mg L-1, and the removal efficiencies in the UASB reactors in two stages of 92 and 90%, respectively, and increased to 97% with post-treatment. The average values of the removal efficiencies of total nitrogen and phosphorus were of 57 to 80% and 44 to 60%, respectively, in the UASB reactors in two stages and increased to 91 and 84% with the post-treatment.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 806 ◽  
Author(s):  
Mohammed Ali Musa ◽  
Syazwani Idrus ◽  
Hasfalina Che Man ◽  
Nik Norsyahariati Nik Daud

Cattle slaughterhouse wastewater (CSWW) with an average chemical oxygen demand (COD) and biochemical oxygen demand of 32,000 mg/L and 17,000 mg/L, respectively, can cause a severe environmental hazard if discharged untreated. Conventional upflow anaerobic sludge blanket (UASB) reactor is used in the treatment of slaughterhouse wastewater to meet the discharge standard limit of wastewater discharge set by the Department of Environment Malaysia (DOE). However, at higher loading rates the conventional systems are characterized by slow-growing microorganism resulting in long startup period, surface scum formation, and sludge washout. In this work, the performance of two laboratory scale (12 L) conventional (R1) and modified (R2) UASB reactors treating CSWW at mesophilic (36 ± 1 °C) condition were investigated. Both reactors were subjected to increasing organic loading rate (OLR) from 1.75 to 32 g L−1 day−1. The average COD, BOD5, and TSS removal efficiencies were ˃90%, at an OLR between 1.75 to 5 g L−1 day−1. The study revealed that R1 drastically reduced to 50, 53, and 43% with increasing OLR until 16 g L−1 day−1, whereas R2 maintained 76, 77, and 88% respectively, under the same OLR. Sign of reactor instability was very much pronounced in R1, showing poorly active Methanosaeta spp., whereas R2 showed a predominantly active Methanosarcina spp.


Sign in / Sign up

Export Citation Format

Share Document