Comparative survival of Cryptosporidium, coxsackievirus A9 and Escherichia coli in stream, brackish and sea waters

2003 ◽  
Vol 47 (3) ◽  
pp. 91-96 ◽  
Author(s):  
A.M. Nasser ◽  
N. Zaruk ◽  
L. Tenenbaum ◽  
Y. Netzan

Discharge of inadequately treated wastewater into streams may result in the dissemination of pathogens and the contamination of surface water sources. Determining the die-off rate of pathogenic microorganisms in stream and sea waters may serve as the basis for evaluating the health risks posed by the presence of pathogens in seawater. This study was conducted to determine the effect of microbial load, temperature, salinity and turbidity on the die-off of oocysts of Cryptosporidium as compared to that of coxsackie A9 virus (Cox A9) and E. coli. The test microorganisms were seeded into stream, outfall or sea waters and incubated at either 30°C (summer) or 15°C (winter). At 30°C, the fastest die-off was observed for Cox A9 where <5-log was reduced regardless of the water quality. At 15°C Cox A9 persistence was similar to that of Cryptosporidium where no change was detected in the concentration of either throughout the study period. E coli die-off reached 5 orders of magnitude within 10d then its concentration remained unchanged. The die-off of E coli was faster than observed for Cox A9 at 15°C regardless of the water quality. No decrease was observed in the viability of Cryptosporidium under all tested conditions throughout the study period indicating the unsuitability of E coli to serve as an indicator for the presence of parasites and viruses in stream and marine waters. The prolonged persistence of pathogenic microorganisms in marine waters suggested that discharge of contamination into streams may present a serious environmental health risk.

2014 ◽  
Vol 80 (16) ◽  
pp. 4814-4820 ◽  
Author(s):  
Lisa A. Jones ◽  
Randy W. Worobo ◽  
Christine D. Smart

ABSTRACTIn the United States, surface water is commonly used to irrigate a variety of produce crops and can harbor pathogens responsible for food-borne illnesses and plant diseases. Understanding when pathogens infest water sources is valuable information for produce growers to improve the food safety and production of these crops. In this study, prevalence data along with regression tree analyses were used to correlate water quality parameters (pH, temperature, turbidity), irrigation site properties (source, the presence of livestock or fowl nearby), and precipitation data to the presence and concentrations ofEscherichia coli,Salmonellaspp., and hymexazol-insensitive (HIS) oomycetes (PhytophthoraandPythiumspp.) in New York State surface waters. A total of 123 samples from 18 sites across New York State were tested forE. coliandSalmonellaspp., of which 33% and 43% were positive, respectively. Additionally, 210 samples from 38 sites were tested for HIS oomycetes, and 88% were found to be positive, with 10 species ofPhytophthoraand 11 species ofPythiumbeing identified from the samples. Regression analysis found no strong correlations between water quality parameters, site factors, or precipitation to the presence or concentration ofE. coliin irrigation sources. ForSalmonella, precipitation (≤0.64 cm) 3 days before sampling was correlated to both presence and the highest counts. Analyses for oomycetes found creeks to have higher average counts than ponds, and higher turbidity levels were associated with higher oomycete counts. Overall, information gathered from this study can be used to better understand the food safety and plant pathogen risks of using surface water for irrigation.


2021 ◽  
Author(s):  
M. M. Majedul Islam ◽  
Md. Atikul Islam

Abstract Faecal contamination of surface water sources is an important water quality issue worldwide. Although quite a few studies exist on surface water faecal contamination and variability of indicator bacteria, most of the studies have been based on larger river basins and in temperate region. The variability is relatively unknown in local scale and in tropical developing countries. In this study we assess how anthropogenic and environmental factors affect faecal contamination and physicochemical parameters in Rupsha and Bhairab rivers around Khulna city, Bangladesh. Water samples were collected from six locations of the rivers during a wet and dry period in 2018 to measure Escherichia coli (E. coli) concentrations. Water physicochemical parameters—temperature, turbidity, pH, dissolved oxygen, biochemical oxygen demand and chemical oxygen demand were also measured. Higher concentrations of E. coli were found in the sampling sites located near the densely populated urban area compared to the downstream site, which receives fewer amounts of discharges from sewer drains. All the E. coli samples violated bathing water quality standards. E. coli concentrations were found to be correlated positively with precipitation and turbidity. A linear regression model was applied, that explains large part of the variation in E. coli concentration (R2 = 0.42). Water quality index assessment was also ranked the water quality as ‘poor’ category; indicate that the water is unsuitable for uses in domestic and recreational purposes and high health risks involved with the water use. The study findings highlight the problem of untreated sewage discharge into the rivers. Implementation of sewage treatment plant with adequate capacity is highly recommended.


1993 ◽  
Vol 27 (7-8) ◽  
pp. 287-294 ◽  
Author(s):  
S. Lerman ◽  
O. Lev ◽  
A. Adin ◽  
E. Katzenelson

The Israel Ministry of Health is now revising its regulations for the assurance of safe water quality in public swimming pools. Since it is not possible to monitor each of the pathogenic microorganisms, it is often recommended to monitor indicator bacteria which provide indirect information on the water quality in the swimming pool. Three indicator microorganisms are often recommended: coliform counts (total coliforms, fecal coliforms or E. Coli), staphylococcus aureus and pseudomonas aeruginosa. A four year survey of the water quality of swimming pools in the Jerusalem District was conducted in order to determine whether the monitoring of all three indicators is necessary to assure safe water quality or is it sufficient to monitor only a single microorganism. A statistical analysis, conducted by using several different statistical techniques, reveals that the populations of the three indicator organisms are significantly interdependent but the correlations between each pair of these indicators are not sufficient to base a prediction of any of the organisms based on the measurements of the others. Therefore, it is concluded that monitoring of all three indicators should be recommended in order to provide an adequate picture of the water quality in swimming pools.


2017 ◽  
Vol 78 (1) ◽  
pp. 155-159 ◽  
Author(s):  
M. Oliveira ◽  
D. Freire ◽  
N. M. Pedroso

Abstract The detection of pathogenic microorganisms in aquatic environments is extremely relevant in terms of public health. As these laboratorial methodologies are usually difficult, expensive and time-consuming, they are frequently replaced by the assessment of fecal indicator bacteria, such as Escherichia coli. This study aimed to assess the presence of E. coli in fecal samples from Neotropical otters, to evaluate its potential as fecal indicator to be applied to the determination of water microbiological quality in areas where otters’ populations are high. Twenty-six otter fecal samples, collected in Alto Paranapanema river basin, São Paulo State, Brazil, were analyzed for the presence of E. coli, using conventional bacteriological methods. Only 8 scat samples (30%) were E. coli positive, indicating that this microorganism is not a suitable fecal indicator to assess water fecal contamination by Neotropical otters, and should not be used to infer the presence of otter related pathogens in waters.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


1998 ◽  
Vol 38 (12) ◽  
pp. 171-174 ◽  
Author(s):  
M. N Byappanahalli ◽  
R. S. Fujioka

Concentrations of faecal coliforms and Escherichia coli in environmental waters have historically been used to establish recreational water quality standards. When these bacteria are used as indices of water quality, it is assumed that there are no significant environmental sources of these bacteria which are unrelated to direct faecal contamination. However, we have previously reported that in tropical island environments such as in Hawaii, these faecal indicators are consistently found at high concentrations in all streams and the source of these faecal bacteria is the soil. To become so well established in soil we hypothesized that these faecal bacteria must have the ability to multiply in the natural soil environment at ambient temperature (23–25°C). Three lines of evidence support this hypothesis: (1) E. coli was shown to grow on 10% soil extract agar, (2) populations of faecal coliforms and E. coli from sewage were shown to immediately increase by about three logs when simple nutrients (glucose and salts) were added to natural soil and (3) faecal coliforms and E. coli increased by two logs within 24 h when a minimal amount of sewage was added to cobalt-irradiated soil. These results indicate that tropical soil environments provide sufficient means to support the growth of faecal coliforms and E. coli. However, under natural soil conditions, indigenous soil microorganisms are much more efficient in obtaining nutrients and we hypothesize that faecal bacteria grow sporadically in response to available nutrients.


2004 ◽  
Vol 2 (2) ◽  
pp. 103-114 ◽  
Author(s):  
Julie Kinzelman ◽  
Sandra L. McLellan ◽  
Annette D. Daniels ◽  
Susan Cashin ◽  
Ajaib Singh ◽  
...  

Racine, Wisconsin, located on Lake Michigan, experiences frequent recreational water quality advisories in the absence of any identifiable point source of pollution. This research examines the environmental distribution of Escherichia coli in conjunction with the assessment of additional parameters (rainfall, turbidity, wave height, wind direction, wind speed and algal presence) in order to determine the most probable factors that influence E. coli levels in surface waters. Densities of E. coli were highest in core samples taken from foreshore sands, often exceeding an order of magnitude greater than those collected from submerged sands and water. Simple regression and multivariate analyses conducted on supplementary environmental data indicate that the previous day's E. coli concentration in conjunction with wave height is significantly predictive for present-time E. coli concentration. Genetic fingerprinting using repetitive element anchored PCR and cellular fatty acid analysis were employed to assess the presence of clonal isolates which indicate replication from a common parent cell. There were relatively few occurrences of clonal patterns in isolates collected from water, foreshore and submerged sands, suggesting that accumulation of E. coli, rather than environmental replication, was occurring in this system. Non-point source pollution, namely transport of accumulated E. coli from foreshore sands to surface waters via wave action, was found to be a major contributor to poor recreational water quality at the Lake Michigan beaches involved in this study.


2020 ◽  
Vol 4 ◽  
Author(s):  
Hsin-Bai Yin ◽  
Nidhi Gupta ◽  
Chi-Hung Chen ◽  
Ashley Boomer ◽  
Abani Pradhan ◽  
...  

Treated wastewater (TW) and roof-collected rain water (RW) that meet the required microbial quality as per Food Safety Modernization Act (FSMA) regulation may serve as alternative irrigation water sources to decrease the pressure on the current water scarcity. Alternative water sources may have different water characteristics that influence the survival and transfer of microorganisms to the irrigated produce. Further, these water sources may contain pathogenic bacteria such as Shiga-toxigenic Escherichia coli. To evaluate the risk associated with TW and RW irrigation on the fresh produce safety, the effect of TW and RW irrigation on the transfer of two non-pathogenic E. coli strains as surrogates for E. coli O157:H7 to different lettuce cultivars grown in the field was investigated. Lettuce cultivars “Annapolis,” “Celinet,” and “Coastline” were grown in the field at the Fulton farm (Chambersburg, PA). Approximately 10 days before harvest, lettuce plants were spray-irrigated with groundwater (GW), TW, or RW containing 6 log CFU ml−1 of a mixture of nalidixic acid-resistant E. coli O157:H12 and chloramphenicol-resistant E. coli K12 in fecal slurry as non-pathogenic surrogates for E. coli O157:H7. On 0, 1, 3, 7, and 10 days post-irrigation, four replicate lettuce leaf samples (30 g per sample) from each group were collected and pummeled in 120 ml of buffered peptone water for 2 min, followed by spiral plating on MacConkey agars with antibiotics. Results showed that the recovery of E. coli O157:H12 was significantly greater than the populations of E. coli K12 recovered from the irrigated lettuce regardless of the water sources and the lettuce cultivars. The TW irrigation resulted in the lowest recovery of the E. coli surrogates on the lettuce compared to the populations of these bacteria recovered from the lettuce with RW and GW irrigation on day 0. The difference in leaf characteristics of lettuce cultivars significantly influenced the recovery of these surrogates on lettuce leaves. Populations of E. coli O157:H12 recovered from the RW-irrigated “Annapolis” lettuce were significantly lower than the recovery of this bacterium from the “Celinet” and “Coastline” lettuce (P < 0.05). Overall, the recovery of specific E. coli surrogates from the RW and TW irrigated lettuce was comparable to the lettuce with the GW irrigation, where GW served as a baseline water source. E. coli O157:H12 could be a more suitable surrogate compared to E. coli K12 because it is an environmental watershed isolate. The findings of this study provide critical information in risk assessment evaluation of RW and TW irrigation on lettuce in Mid-Atlantic area.


Author(s):  
Nada Hanna ◽  
Manju Purohit ◽  
Vishal Diwan ◽  
Salesh P. Chandran ◽  
Emilia Riggi ◽  
...  

The emergence of antibiotic resistance is a major global and environmental health issue, yet the presence of antibiotic residues and resistance in the water and sediment of a river subjected to excessive anthropogenic activities and their relationship with water quality of the river are not well studied. The objectives of the present study were a) to investigate the occurrence of antibiotic residues and antibiotic-resistant Escherichia coli (E. coli) in the water and sediment of the Kshipra river in India at seven selected sites during different seasons of the years 2014, 2015, and 2016 and b) to investigate the association between antibiotic residues and antibiotic-resistant E. coli in water and sediment and measured water quality parameters of the river. Antibiotic residues and resistant E. coli were present in the water and sediment and were associated with the measured water quality parameters. Sulfamethoxazole was the most frequently detected antibiotic in water at the highest concentration of 4.66 µg/L and was positively correlated with the water quality parameters. Significant (p < 0.05) seasonal and spatial variations of antibiotic-resistant E. coli in water and sediment were found. The resistance of E. coli to antibiotics (e.g., sulfamethiazole, norfloxacin, ciprofloxacine, cefotaxime, co-trimoxazole, ceftazidime, meropenem, ampicillin, amikacin, metronidazole, tetracycline, and tigecycline) had varying associations with the measured water and sediment quality parameters. Based on the results of this study, it is suggested that regular monitoring and surveillance of water quality, including antibiotic residues and antibiotic resistance, of all rivers should be taken up as a key priority, in national and Global Action Plans as these can have implications for the buildup of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document