Nutrient removal process development and full implementation at the 4 million p.e. main treatment plant of Vienna, Austria

2004 ◽  
Vol 50 (7) ◽  
pp. 19-26 ◽  
Author(s):  
H. Kroiss ◽  
F. Klager ◽  
S. Winkler ◽  
G. Wandl ◽  
K. Svardal

The Main Treatment Plant of Vienna is in extension for 4 million p.e. and very stringent nutrient removal requirements. The existing high rate BOD removal activated sludge plant (in operation since 1980) is extended by a second stage activated sludge plant and a newly developed flow scheme for nitrogen removal optimisation adaptable to the temperature variations over the year. For this plant pilot investigations have been performed for the development of a specific mathematical model (ASMV) and a specific aeration control strategy. The civil work of the extension is already finished and the installation of the equipment has started. Operation should start in 2004. The whole project will cost about €264 million of which about one half is for civil work. The effluent standards correspond to the requirements for sensitive areas in EU Directive for Municipal Waste Water. The raw primary and excess sludge are incinerated after thickening and dewatering. This paper tries to condense the already existing literature with the construction progress and the cost situation.

2006 ◽  
Vol 53 (8) ◽  
pp. 149-157 ◽  
Author(s):  
S. Watts ◽  
G. Hamilton ◽  
J. Keller

A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 °C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36–37 °C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36–37 °C. The results showed a truly thermophilic stage (60 °C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 °C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 131-138
Author(s):  
Ahmed Fadel

Many of Egypt's cities have existing treatment plants under operation that have been constructed before 1970. Almost all of these treatment plants now need rehabilitation and upgrading to extend their services for a longer period. One of these plants is the Beni Suef City Wastewater Treatment Plant. The Beni Suef WWTP was constructed in 1956. It has primary treatment followed by secondary treatment employing intermediate rate trickling filters. The BOD, COD, and SS concentration levels are relatively high. They are approximately 800, 1100, and 600 mg/litre, respectively. The Beni Suef city required the determination of the level of work needed for the rehabilitation and upgrading of the existing 200 l/s plant and to extend its capacity to 440 l/s at year 2000 A description of the existing units, their deficiencies and operation problems, and the required rehabilitation are presented and discussed in this paper. Major problems facing the upgrading were the lack of space for expansion and the shortage of funds. It was, therefore, necessary to study several alternative solutions and methods of treatment. The choice of alternatives was from one of the following schemes: a) changing the filter medium, its mode of operation and increasing the number of units, b) changing the trickling filter to high rate and combining it with the activated sludge process, for operation by one of several possible combinations such as: trickling filter-solids contact, roughing filter-activated sludge, and trickling filter-activated sludge process, c) dividing the flow into two parts, the first part to be treated using the existing system and the second part to be treated by activated sludge process, and d) expanding the existing system by increasing the numbers of the different process units. The selection of the alternative was based on technical, operational and economic evaluations. The different alternatives were compared on the basis of system costs, shock load handling, treatment plant operation and predicted effluent quality. The flow schemes for the alternatives are presented. The methodology of selecting the best alternative is discussed. From the study it was concluded that the first alternative is the most reliable from the point of view of costs, handling shock load, and operation.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


2008 ◽  
Vol 74 (9) ◽  
pp. 2583-2587 ◽  
Author(s):  
Roberto A. Rodríguez ◽  
Patricia M. Gundy ◽  
Charles P. Gerba

ABSTRACT The objective of this study was to compare PLC/PRF/5 and BGM cell lines for use in a total culturable viral assay (TCVA) of treated sewage effluents. Samples were collected before and after chlorination from an activated sludge wastewater treatment plant and from the effluent of a high-rate enhanced flocculation system, followed by UV light disinfection. Cell monolayers were observed for cytopathic effect (CPE) after two passages of 14 days each. Monolayers exhibiting viral CPE were tested for the presence of adenoviruses and enteroviruses by PCR or reverse transcription-PCR. Eight percent of the samples exhibited CPE on BGM cells, and 57% showed CPE on PLC/PRF/5 cells. Only enteroviruses were detected on the BGM cells, while 30% and 52% of the samples were positive for enteroviruses and adenoviruses, respectively, on the PLC/PRF/5 cells. Thirty percent of the samples were positive for both adenoviruses and enteroviruses in chlorinated activated sludge effluent. Thirty percent of the samples were positive for adenoviruses in the UV treatment effluent, but no enteroviruses were detected. In conclusion, the PLC/PRF/5 cells were more susceptible than BGM cells to viruses found in treated sewage. The use of BGM cells for TCVA may underestimate viral concentration in sewage effluent samples. The PLC/PRF/5 cells were more susceptible to adenoviruses, which is important in the evaluation of UV disinfection systems because adenoviruses are highly resistant to UV inactivation.


2013 ◽  
Vol 8 (1) ◽  
pp. 16-22

In this study two bench scale activated sludge systems were used, a CSTR and an SBR for the treatment of coke – oven wastewater. Both reactors were inoculated with activated sludge from a municipal wastewater treatment plant. At the first stages of operation, reactors were feed by a mixture of municipal wastewater and synthetic wastewater. Full acclimatization of the microorganisms to synthetic wastewater was achieved in 60 days. The operation of the reactors was divided into three distinct periods. The first period was characterized by the treatment of high organic but non-toxic synthetic wastewater. During this period COD and BOD5 removal efficiencies reached 95 and 98% respectively, in both reactors. Nutrient removal was better in the SBR reactor rather than in the CSTR. In the second period phenol was added in concentrations up to 300 mg l-1. Degradation of phenol started about the 20th day after its introduction to the reactors. In this period no effects of phenol to nutrient removal were observed, whereas the removal efficiency of organic matter in both reactors was slightly decreased. During the third period phenol concentrations of the influent were gradually increased to 1000 mg l-1, while cyanide and thiocyanite were added to the influent composition to concentrations reaching concentrations of 20 and 250 mg l-1 respectively. The composition of the influent of this period was a full assimilation of coke oven wastewater. Introduction of increased phenol concentrations along with cyanide compounds initiated irreversible effects on the activated sludge microfauna of the CSTR causing inherent problems to the treatment process, while SBR showed greater capacity to withstand and degrade toxic compounds. The beginning of this period was characterized by decreased settleability of the suspended solids as well as decrease of organic matter and nutrient removal efficiencies. Monitoring of the effluent characteristics during this period reported over 90% for organic load, 85% of nutrient removal and over 90% of phenol and cyanide removal in SBR, while the removal efficiencies for the CSTR were 75, 65 and 80% respectively.


2021 ◽  
Vol 6 (3) ◽  
Author(s):  
Adryan Lukman Indira ◽  
Didin Agustian Permadi ◽  
Etih Hartati

District Aerocity X in Kabupaten Majalengka is a commercial  and industrial area that enhances  economic growth in Provinsi Jawa Barat. The district with an area of 3,480 ha is integrated into  the domestic sector. However, this area  also has the potential  to cause harm  if the waste is not treated.  Following PP No 142 Tahun 2015,  each industrial area  must provide an effective and efficient wastewater treatment plant (WWTP). This design  plan begins with the  analysis  of issues  on the study site . The data were obtained using the Aerocity X District Pre-Development Office  study method .  The method of  designing effective alternatives for WWTP used the weighted ranking technique (WRT), each alternative was compared with two fundamental,  technical and non-technical aspects. The purpose of this design plan is to analyze the index of land and cost requirements for WWTP. The yield of wastewater was 3.99 m3/s. The most effective land and the cost is complete mix-activated sludge. The result of installing  the design plan requires an area of 9,446.5 m2/m3 of wastewater and a cost of Rp5,619.53x106/m3 of wastewater.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 1027-1036 ◽  
Author(s):  
Huseyin Guven ◽  
Mustafa Evren Ersahin ◽  
Recep Kaan Dereli ◽  
Hale Ozgun ◽  
Isa Isik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document