Landfill leachate treatment by an experimental subsurface flow constructed wetland in tropical climate countries

2005 ◽  
Vol 52 (12) ◽  
pp. 243-250 ◽  
Author(s):  
Z. Ujang ◽  
E. Soedjono ◽  
M.R. Salim ◽  
R.B. Shutes

Municipal leachate was treated in an experimental unit of constructed wetlands of subsurface flow type. The parameters studied were organics (BOD and COD), solids and heavy metals (Zn, Ni, Cu, Cr and Pb). Using two types of emergent plants of Scirpus globulosus and Eriocaulon sexangulare, more than 80% removal was achieved for all the parameters. E. sexangulare removed organics and heavy metals better than Scirpus globulosus. A higher concentration of heavy metals in the influent did not change the removal efficiency.

2020 ◽  
Vol 312 ◽  
pp. 123611
Author(s):  
Chayanid Witthayaphirom ◽  
Chart Chiemchaisri ◽  
Wilai Chiemchaisri ◽  
Yuka Ogata ◽  
Yoshitaka Ebie ◽  
...  

2020 ◽  
Vol 24 (06) ◽  
pp. 91-102
Author(s):  
Zahraa S. Aswad ◽  
◽  
Ahmed H. Ali ◽  
Nadia M. Al-Mhana ◽  
◽  
...  

A vertical subsurface flow constructed wetland (VSSFCW) and a free surface flow constructed wetland (FSFCW) were set for the objective of comparison the performance of two systems in order to make a decision of the better one for future installation of wastewater treatment system and power generation. Both of the constructed wetlands were planted with Cyperus Alternifolius. During the observation period (19 days or 456 hours), environmental conditions such as pH, temperature, total chemical oxygen demand (COD), phosphate (PO4), nitrate (NO3) ,total suspended solids (TSS), total dissolved solids (TDS), Pb, Cu, and Cd removal efficiencies of the systems were determined. According to the results, final removal efficiencies for the VSSF and FWSF, respectively, were: COD (94.3% and 94.3%),PO4 (84.3% and 75.3%), NO3 (100% and 100%), TSS (96.8% and 85.6%), Pb (65.8% and 81.4%), Cu (more than 94.7% and 89.4%), Cd (85.7% and 88%). The treatment performances of the VSSF were better than that of the FWSF with regard to the removal of suspended solids and nutrients. In FWSF systems, electricity generation performed better than VSSF of 31.4 mV especially with batch system during one wastewater feed is loaded among all of the nineteen days with maximum voltage of 33.7 mV and decreased gradually as oxygen depletion in cathode chamber and less metabolism processes has occurred.


2020 ◽  
Author(s):  
Linda Grinberga ◽  
Ainis Lagzdins

<p>This study includes water quality monitoring data obtained since June, 2014 at the farm located in the middle part of Latvia. The water treatment system with two separate constructed wetlands was established to improve water quality in agricultural area. A surface flow constructed wetland received drainage runoff from the agricultural catchment basin. A subsurface flow constructed wetland was implemented to retain nutrients from the surface runoff collected in the area of impermeable pavements of the farmyard. As there are no other specific calculations recommended for the designing of constructed wetlands in Latvia, both wetlands were calculated basing on the surface area of the constructed wetland/catchment area ratio. The surface area of the subsurface flow constructed wetland was deigned by 1.2% of the catchment area and the ratio was 0.5 % for the surface flow constructed wetland.</p><p>Water samples were collected manually by grab sampling method once or twice per month basing on a flowrate. Water quality parameters such as total suspended solids (TSS), nitrate-nitrogen (NO3-N), ammonium-nitrogen (NH4-N), total nitrogen (TN), orthophosphate-phosphorus (PO4-P), and total phosphorus (TP), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) were analysed to monitor the performance of both wetlands. The concentrations at the inlet and outlet were compared to evaluate the efficiency of the water treatment.</p><p>The concentrations of NO3-N, NH4-N and TN were reduced on average by 21 %, 35 % and 20 %, respectively for the surface flow constructed wetland. PO4-P and TP concentrations were reduced on average by 31 % and 45 %, respectively for the surface flow constructed wetland. Total suspended solids were reduced by 17% at the outlet of the surface flow constructed wetland. However, in some cases, an increase in nutrient concentrations in water leaving the wetland was observed. The study showed the constant reduction of the PO4-P and TP concentrations 82 % and 83 %, respectively in the subsurface flow constructed wetland. The concentrations of NO3-N, NH4-N and TN were reduced on average by 14 %, 66 % and 53 %, respectively for the subsurface flow constructed wetland. BOD and COD reduction on average by 93 % and 83 %, respectively in for the subsurface flow constructed wetland indicated the ability of the treatment system to be adapted for wastewater treatment with high content of organic matter under the given climate conditions. This study outlined that the farmyards should receive a special attention regarding surface runoff management.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 865 ◽  
Author(s):  
Lei Zheng ◽  
Tingting Liu ◽  
En Xie ◽  
Mingxue Liu ◽  
Aizhong Ding ◽  
...  

When used as highly produced chemicals and widely used plasticizers, Phthalate acid esters (PAEs) have potential risks to human life and the environment. In this study, to assess the distribution and fate of PAEs, specifically inside a full-scale horizontal subsurface flow constructed wetland, four PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and bis (2-ethylhexyl) phthalate (DEHP) were investigated. In effluent, PAEs concentration decreased 19.32% (DMP), 19.18% (DEP), 19.40% (DBP), and 48.56% (DEHP), respectively. Within the wetland, PAEs partitioned in water (0.18–1.12 μg/L, 35.38–64.92%), soil (0.44–5.08 μg/g, 1.02–31.33%), plant (0.68–48.6 μg/g, 0.85–36.54%), air and biological transformation (2.72–33.21%). The results indicated that soil and plant adsorption contributed to the majority of PAE removal, digesting DMP (19.32%), DEP (19.18%), DBP (19.40%), and DEHP (48.56%) in constructed wetlands. Moreover, the adsorption was affected by both octanol/water partition coefficient (Kow) and transpiration stream concentration factors (TSCF). This work, for the first time, revealed the partition and fate of PAEs in constructed wetlands to the best of our knowledge.


2018 ◽  
Vol 4 (0) ◽  
Author(s):  
Nelson Mbanefo Okoye ◽  
Chimaobi Nnaemeka Madubuike ◽  
Ifeanyi Uba Nwuba ◽  
Sampson Nonso Ozokoli ◽  
Boniface Obi Ugwuishiwu

Wastewater treatment using constructed wetlands is one of the effective and low-cost technologies to improve the quality of slaughterhouse effluent. This study was carried out to investigate the suitability of palm kernel shell as a substrate material for constructed wetlands treating slaughterhouse wastewater. Rhizomes of Thalia Geniculata and Typha Latifolia were grown in four pilot horizontal subsurface flow constructed wetland beds filled with palm kernel shell and grave, and their growth and treatment performance evaluated. The results of the study showed that Thalia Geniculata survives and proliferates in palm kernel shell bed. The mean removal rates of 72.81% (BOD5), 89.87% (TSS), 39.42% (NH4-N), 60.79% (NO3-N) and 42.52% (PO43-) for the palm kernel shell were comparable to the values obtained for the gravel bed. The study proved that palm kernel shell, as a substrate material in constructed wetlands had the potentials to sustain the growth of some macrophytes, as well as the capacity to remove contaminants from wastewater.


2011 ◽  
Vol 393-395 ◽  
pp. 1304-1307 ◽  
Author(s):  
En Shi ◽  
Zong Lian She ◽  
Tian Xie ◽  
Jian Wu ◽  
Xiao Hui Fu

The main purpose of this study was to treat organic pollutants, nitrogen and phosphorus in polluted river water by the use of constructed wetland (CW) systems. A laboratory experiment research was conducted on subsurface flow constructed wetland systems operated in vertical flow (VF) and horizontal flow (HF) mode. The systems were unplanted and hydraulic retention times were identically 2.7 days. The average removal efficiencies for HFCW and VFCW were NH+ 4-N 64.9% and 75.2%, NO- 3-N 92.3% and 40.1%, COD 97.5% and 90.1%, TP 94.6% and 96.2%, respectively. The removal of NH+ 4-N and NO- 3-N in the different CW units were in order of VFCW (drained) > VFCW (flooded) > HFCW and HFCW > VFCW (flooded) > VFCW (drained), respectively. When the water level in the VFCW was changed, an obvious fluctuation of the effluent NH+ 4-N and NO- 3-N concentrations was observed.


2007 ◽  
Vol 56 (3) ◽  
pp. 193-198 ◽  
Author(s):  
E. Lesage ◽  
D.P.L. Rousseau ◽  
A. Van de Moortel ◽  
F.M.G. Tack ◽  
N. De Pauw ◽  
...  

The removal of Co, Ni, Cu and Zn from synthetic industrial wastewater was studied in subsurface flow constructed wetland microcosms filled with gravel or a gravel/straw mixture. Half of the microcosms were planted with Phragmites australis and half were left unplanted. All microcosms received low-strength wastewater (1 mg L−1 of Co, Ni, and Zn, 0.5 mg L−1 Cu, 2,000 mg L−1 SO4) during seven 14-day incubation batches. The pore water was regularly monitored at two depths for heavy metals, sulphate, organic carbon and redox potential. Sorption properties of gravel and straw were assessed in a separate experiment. A second series of seven incubation batches with high-strength wastewater (10 mg L−1 of each metal, 2,000 mg L−1 SO4) was then applied to saturate the substrate. Glucose was added to the gravel microcosms together with the high-strength wastewater. Sorption processes were responsible for metal removal during start-up, with the highest removal efficiencies in the gravel microcosms. The lower initial efficiencies in the gravel/straw microcosms were presumably caused by the decomposition of straw. However, after establishment of anaerobic conditions (Eh∼−200 mV), precipitation as metal sulphides provided an additional removal pathway in the gravel/straw microcosms. The addition of glucose to gravel microcosms enhanced sulphate reduction and metal removal, although Phragmites australis negatively affected these processes in the top-layer of all microcosms.


2020 ◽  
Vol 38 ◽  
pp. 101581
Author(s):  
Chayanid Witthayaphirom ◽  
Chart Chiemchaisri ◽  
Wilai Chiemchaisri ◽  
Yuka Ogata ◽  
Yoshitaka Ebie ◽  
...  

2016 ◽  
Vol 23 (12) ◽  
pp. 12384-12391 ◽  
Author(s):  
Reza Bakhshoodeh ◽  
Nadali Alavi ◽  
Amir Soltani Mohammadi ◽  
Hossein Ghanavati

Sign in / Sign up

Export Citation Format

Share Document