Implementation of the IWA anaerobic digestion model No.1 (ADM1) for simulating digestion of blackwater from vacuum toilets

2006 ◽  
Vol 53 (9) ◽  
pp. 253-263 ◽  
Author(s):  
Y. Feng ◽  
J. Behrendt ◽  
C. Wendland ◽  
R. Otterpohl

The IWA anaerobic digestion model No.1 (ADM1) is applied to the blackwater anaerobic digestion (BWAD) plant in this work. In order to verify the biochemical kinetics, batch experiments were executed. According to the Monod type kinetics, the maximum uptake rates (km) of butyric acid (HBu), propionic acid (HPr) and acetic acid (HAc) are testified as 18, 14, 13 d−1, and their half saturation concentrations (KS) are 110, 120, 160 g COD/m3, respectively. Afterwards, the model was calibrated based on the performance of a laboratory scale BWAD plant (under mesophilic conditions) by three scenario studies, i.e. the reference conditions, different feeding frequencies and high NH4+ concentration. The model successfully simulated three scenarios. The further two virtual scenario studies were achieved based on the calibrated model. First, the performance of BWAD plant was predicted with different hydraulic retention times (HRT); second, the kitchen refuse (KR) was added into the BWAD plant as additional organic loading. The model predicted the perspective of BW plus KR digestion and generated valuable suggestions for the operation of the real BWAD plant.

2014 ◽  
Vol 955-959 ◽  
pp. 527-531
Author(s):  
Jian Zheng Li ◽  
Yu Peng Zhang ◽  
Chong Liu ◽  
Ze Yu Tang

The activities of methanogen are easily affected by inhibitory substances and lead to anaerobic digestion failure. To investigate inhibitory effects on methanogenesis of a methanogen-enriched sludge, pH, volatile fatty acids (such as acetic acid, propionic acid and butyric acid), and ammonia were used as inhibitory factors and a L16(45) orthogonal table was employed to design batch experiments. The result of variance analyses shows that pH has the greatest impact on the methanogenesis of the enriched culture. The impact of butyrate, NH3, acetate and propionate was decreased in order. DGGE finger-print shows that there was only one methanogen in the inoculum sludge.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ruiling Gao ◽  
Zifu Li ◽  
Xiaoqin Zhou ◽  
Wenjun Bao ◽  
Shikun Cheng ◽  
...  

Abstract Background Volatile fatty acids (VFAs) can be effective and promising alternate carbon sources for microbial lipid production by a few oleaginous yeasts. However, the severe inhibitory effect of high-content (> 10 g/L) VFAs on these yeasts has impeded the production of high lipid yields and their large-scale application. Slightly acidic conditions have been commonly adopted because they have been considered favorable to oleaginous yeast cultivation. However, the acidic pH environment further aggravates this inhibition because VFAs appear largely in an undissociated form under this condition. Alkaline conditions likely alleviate the severe inhibition of high-content VFAs by significantly increasing the dissociation degree of VFAs. This hypothesis should be verified through a systematic research. Results The combined effects of high acetic acid concentrations and alkaline conditions on VFA utilization, cell growth, and lipid accumulation of Yarrowia lipolytica were systematically investigated through batch cultures of Y. lipolytica by using high concentrations (30–110 g/L) of acetic acid as a carbon source at an initial pH ranging from 6 to 10. An initial pH of 8 was determined as optimal. The highest biomass and lipid production (37.14 and 10.11 g/L) were obtained with 70 g/L acetic acid, whereas cultures with > 70 g/L acetic acid had decreased biomass and lipid yield due to excessive anion accumulation. Feasibilities on high-content propionic acid, butyric acid, and mixed VFAs were compared and evaluated. Results indicated that YX/S and YL/S of cultures on butyric acid (0.570, 0.144) were comparable with those on acetic acid (0.578, 0.160) under alkaline conditions. The performance on propionic acid was much inferior to that on other acids. Mixed VFAs were more beneficial to fast adaptation and lipid production than single types of VFA. Furthermore, cultures on food waste (FW) and fruit and vegetable waste (FVW) fermentate were carried out and lipid production was effectively improved under this alkaline condition. The highest biomass and lipid production on FW fermentate reached 14.65 g/L (YX/S: 0.414) and 3.20 g/L (YL/S: 0.091) with a lipid content of 21.86%, respectively. By comparison, the highest biomass and lipid production on FVW fermentate were 11.84 g/L (YX/S: 0.534) and 3.08 g/L (YL/S: 0.139), respectively, with a lipid content of 26.02%. Conclusions This study assumed and verified that alkaline conditions (optimal pH 8) could effectively alleviate the lethal effect of high-content VFA on Y. lipolytica and significantly improve biomass and lipid production. These results could provide a new cultivation strategy to achieve simple utilizations of high-content VFAs and increase lipid production. Feasibilities on FW and FVW-derived VFAs were evaluated, and meaningful information was provided for practical applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Qian Fang ◽  
Sinmin Ji ◽  
Dingwu Huang ◽  
Zhouyue Huang ◽  
Zilong Huang ◽  
...  

This study explores the use of alkaline pretreatments to improve the hydrolyzation of rice husks to produce volatile fatty acids (VFAs). The study investigated the effects of reagent concentration and pretreatment time on protein, carbohydrates, and dissolved chemical oxygen demand (SCOD) dissolution after the pretreatment. The optimum alkaline pretreatment conditions were 0.30 g NaOH (g VS)−1, with a reaction time of 48 h. The experimental results show that when comparing the total VFA (TVFA) yields from the alkaline-pretreated risk husk with those from the untreated rice husk, over 14 d and 2 d, the maximum value reached 1237.7 and 716.0 mg·L−1 with acetic acid and propionic acid and with acetic acid and butyric acid, respectively. After the alkaline pretreatment, TVFAs increased by 72.9%; VFA accumulation grew over time. The study found that alkaline pretreatment can improve VFA yields from rice husks and transform butyric acid fermentation into propionic acid fermentation. The study results can provide guidelines to support the comprehensive utilization of rice husk and waste treatment.


1951 ◽  
Vol 2 (1) ◽  
pp. 92 ◽  
Author(s):  
GL McClymont

Volatile fatty acid isolated from nine samples of peripheral blood from four cows contained, on a molecular basis, from 90.0 to 97.0 per cent. of acetic acid (mean 93.3 per cent.). The remainder comprised, as mean values, propionic acid, 2.39 per cent.; butyric acid, 2.61 per cent.; and a group of at least three acids between butyric and octanoic, 1.84 per cent. The significance of the high proportion of acetic acid in the volatile fatty acid of bovine peripheral blood is discussed. Only traces of esterified acids lower than octanoic could be found in bovine blood lipides. Volatile fatty acids were found also in the blood of the rabbit, guinea pig, horse, and pig and in human plasma. Here again a high proportion of acetic acid was recorded. Volatile fatty acid isolated from nine samples of ruminal contents from two cows contained on a molecular basis from 52.3 to 69.0 per cent. of acetic acid (mean 60.0 per cent.). The remainder comprised, as mean values, propionic acid, 21.8 per cent.; butyric acid, 14.4 per cent.; and acids higher than butyric (apparently largely valeric and hesanoic), 3.8 per cent. This limited number of analyses indicated no gross effect of type of feed on the proportion of the acids in the rumen.


2018 ◽  
Vol 39 (1) ◽  
pp. 253
Author(s):  
Marcos Rogério Oliveira ◽  
Antônio Vinícius Iank Bueno ◽  
Guilherme Fernando Mattos Leão ◽  
Mikael Neumann ◽  
Clóves Cabreira Jobim

We aimed to evaluate nutritional quality, fermentation profile, aerobic stability, and dry matter losses in corn (Zea mays) and wheat (Triticum aestivum 'BRS Umbu') silages. Treatments included uninoculated and inoculated (Lactobacillus plantarum and Pediococcus acidilactici, 1.0 × 105 UFC g-1) wheat silage, corn silage from a conventional hybrid and a transgenic hybrid. Nutritional quality and fermentation profile variables were tested in a completely randomized design. Means were compared using Tukey’s test at 5% significance. An aerobic stability trial was conducted in a factorial design with two silages (wheat × inoculated wheat; conventional hybrid corn × transgenic hybrid corn) and two temperatures (ambient temperature × controlled temperature at 24°C). Data were submitted to ANOVA and means were analyzed by the F test at 5% probability. Inoculation of wheat silage increased dry matter, organic matter, and total carbohydrates, but reduced crude protein by a dilution effect. Regarding the fermentation profile, inoculation reduced acetic acid and butyric acid content, whereas it increased propionic acid in wheat silage. Bt corn hybrid silage showed higher dry matter and lower neutral detergent fiber, whereas transgenic corn silage showed lower content of acetic acid, propionic acid, alcohol, and ammonia. Conversely, Bt hybrid silage showed higher butyric acid. Transgenic corn silage showed higher temperature than the conventional hybrid silage during aerobic exposure. Inoculated wheat silage experienced larger deterioration and dry matter losses during the aerobic stability trial. Temperature control worsened aerobic stability in all treatments, increasing dry matter losses and heating.


2019 ◽  
Author(s):  
Masaaki Motoori ◽  
Koji Tanaka ◽  
Keijiro Sugimura ◽  
Hiroshi Miyata ◽  
Takuro Saito ◽  
...  

Abstract Background: The intestinal epithelial barrier allows absorption of dietary nutrients and prevents passage of pathogens and toxins into the body. Severe insults have a negative impact on the intestinal environment, which may decrease intestinal barrier function and cause bacterial translocation. Bacterial translocation, which can cause infectious complications, is the passage of microbes from the gastrointestinal tract across the mucosal barrier to extraintestinal sites. The aim of this study was to investigate the correlation between concentrations of preoperative fecal organic acids and the occurrence of postoperative infectious complications in patients with esophageal cancer. Methods: Fifty-five patients with esophageal cancer who underwent esophagectomy were enrolled in this study. All patients were administered perioperative synbiotics. Perioperative clinical characteristics and concentrations of preoperative fecal organic acids were compared between patients with or without postoperative infectious complications. Results: Postoperative infectious complications occurred in 10 patients. In patients with complications, the concentrations of acetic acid and propionic acid were significantly lower than in patients without complications (p=0.044 and 0.032, respectively). The concentration of butyric acid was nonsignificantly lower, while the concentration of lactic acid was nonsignificantly higher in patients with complications. The calculated gap between the concentrations of fecal acetic acid plus propionic acid plus butyric acid minus lactic acid was significantly lower in patients with complications. Multivariate analysis revealed that a low gap between acetic acid plus propionic acid plus butyric acid minus lactic acid was an independent risk factor for postoperative infectious complications (p=0.027). Conclusions : Preoperative fecal concentrations of organic acids had a clinically important impact on the occurrence of postoperative infectious complications in patients with esophageal cancer. To reduce postoperative infectious complications, it may be useful to modulate the intestinal environment and maintain concentrations of fecal organic acids before surgery.


2020 ◽  
Author(s):  
Masaaki Motoori ◽  
Koji Tanaka ◽  
Keijiro Sugimura ◽  
Hiroshi Miyata ◽  
Takuro Saito ◽  
...  

Abstract Background: The intestinal epithelial barrier allows absorption of dietary nutrients and prevents passage of pathogens and toxins into the body. Severe insults have a negative impact on the intestinal environment, which may decrease intestinal barrier function and cause bacterial translocation. Bacterial translocation, which can cause infectious complications, is defined as the passage of microbes from the gastrointestinal tract across the mucosal barrier to extraintestinal sites. The aim of this study was to investigate the correlation between concentrations of preoperative fecal organic acids and the occurrence of postoperative infectious complications in patients with esophageal cancer. Methods: Fifty-five patients with esophageal cancer who underwent esophagectomy were enrolled in this study. Perioperative synbiotics were administered to all patients. Perioperative clinical characteristics and concentrations of preoperative fecal organic acids were compared between patients with and without postoperative infectious complications. Results: Postoperative infectious complications occurred in 10 patients. In patients with complications, the concentrations of acetic acid and propionic acid were significantly lower than in patients without complications (p=0.044 and 0.032, respectively). The concentration of butyric acid was nonsignificantly lower in patients with complications, while the concentration of lactic acid was nonsignificantly higher. The calculated gap between the concentrations of fecal acetic acid plus propionic acid plus butyric acid minus lactic acid was significantly lower in patients with complications. Multivariate analysis revealed that a low gap between acetic acid plus propionic acid plus butyric acid minus lactic acid was an independent risk factor for postoperative infectious complications (p=0.027). Conclusions : Preoperative fecal concentrations of organic acids had a clinically important impact on the occurrence of postoperative infectious complications in patients with esophageal cancer. To reduce postoperative infectious complications, it may be useful to modulate the intestinal environment and maintain concentrations of fecal organic acids before surgery.


2010 ◽  
Vol 39 (2) ◽  
pp. 255-261 ◽  
Author(s):  
Margareth Maria Teles Rêgo ◽  
José Neuman Miranda Neiva ◽  
Aníbal Coutinho do Rêgo ◽  
Magno José Duarte Cândido ◽  
Maria Socorro de Souza Carneiro ◽  
...  

The objective of this study was to evaluate the nutritive value of elephant grass (Pennisetum purpureum, Schum.) silages with the addition of 0, 4, 8, 12 and 16% dried cashew stalk (Anacardium occidentale L.) - DCS, based on the fresh matter. A randomized complete design with four replications was used. Twenty 210 L plastic drums were used as experimental silos. The levels were determined of the dry matter (DM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, ether extract (EE), total carbohydrates (TC), non-fibrous carbohydrates (NFC), neutral detergent insoluble nitrogen (NDIN,% total N), acid detergent insoluble nitrogen (ADIN, % total N), pH values, ammonia nitrogen (in percentage of the total nitrogen, N-NH3, % total N), lactic acid, acetic acid, butyric acid and propionic acid. Adding DCS resulted in higher values of DM, CP, EE, NFC, NDIN (% total N), ADIN (% total N), pH, lactic acid and propionic acid. On the other hand, with increasing DCS levels, a linear decline was observed in values of NDF, ADF, hemicellulose, ammonia nitrogen (% total N) and butyric acid. DCS did not show effect on the TC and acetic acid in the silages. As a result, up to 16% dehydrated cashew stalk may be added to elephant-grass silages, based on the fresh matter, to increase CP and NFC levels and decrease NDF and ADF and improve the fermentation patterns. It should be taken into account that higher NDIN and ADIN values may interfere in nitrogen availability and therefore in further DM intake.


2018 ◽  
Vol 44 (1) ◽  
pp. 6 ◽  
Author(s):  
Marcelo Dal Pozzo ◽  
Julio Viegas ◽  
Gilberto Vilmar Kozloski ◽  
Cristiano Miguel Stefanello ◽  
Alisson Minozzo da Silveira ◽  
...  

Background: The addition of adsorbents in foods has been the strategy used by nutritionists to reduce the toxic effects of mycotoxins in animals. Mycotoxins are found in a range of foods and commonly they present variations in the chemical structure therefore, it has been appropriate to include adsorbents from different sources in the diet of ruminants. However, few researches were conducted in order to better understand the interaction of adsorbents on ruminal fermentation. Our objective in this study was to investigate the possible effects of two adsorbent products on bovine ruminal fermentation. One consists of 65% of β-glucan (β-glu), originating cell wall of Saccharomyces cerevisiae and used at a concentration of 1% and natural sodium montmorillonite (MMT) at a concentration of 5%.Materials, Methods & Results: The effects of β-glu adsorbents (1%) and MMC (5%) in culture medium that simulated ruminal fermentation were evaluated. Bottles, with a capacity of 120 mL, were used to be filled with substrate such as maize and ryegrass hay ground, nutrient solution (medium of Menke), liquid extracted rumen fistulated bovine and the two adsorbents evaluated, totaling 50 mL. The experiment was conducted with three treatments, named after: control (Cont), β-glu and MMT. In the control treatment adsorbents were not added. Six replicates were used for each treatment and two trials were conducted. One of the tests aimed to determine the fermentation kinetics by means of the gas production after 72 h’ incubation and quantifying the production of methane (CH4) at 48h. While another test aimed to quantify the production of short chain fatty acids (SCFA) - acetic, propionic and butyric acid - and the production of ammonia (NH3) in 24 h incubation. All assays were measured by gas chromatography. The highest total SCFA concentration was observed in β-glu treatment (67.71 mM) significantly superior to CONT (57.7 mM) treatment and MMT (53.28 mM), which was significantly lower than the β-glu treatment, but similar to CONT. The average representation (%) of acetic acid for the treatment MMT (62.9%) was significantly higher than the β-glu treatment (61.0%). The average proportions of propionic acid were similar between treatments, while the average representation (%) of butyric acid production was significantly higher for the β-glu treatment (13.1%) compared to CONT treatments (11.3%) and MMT (11.4%). The amount of NH3 was significantly reduced in MMT (9.6 mM) treatment compared to β-glu treatments (12.2 mM) and CONT (11.3 mM). In another test, the greater volume of gas (mL) was produced by β-glu treatment (103.4 mL), which was significantly greater than the treatments CONT (89.0 mL) and MMT (91.6 mL). The lag time, i.e. the time taken by the bacteria inoculum to develop lead-through in the substrate, in the MMT treatment took 6.2 h, slowing significantly compared to CONT treatments (4.8 h) and β Glu (4.33 h). The concentration of CH4 was significantly lower in MMT treatment (33.0%) compared to the CONT treatments (36.3%) and β-glu (35.68%).Discussion: The glucans which constitute the main cell wall S. cerevisae are the β-glucans with β-1-3 and β-1,6 glycosidic bonds. The largest and most significant concentration of SCFA and gas volume in the β-glu treatment can be explained by the degradation of β-glucans by rumen bacteria. The possible reason of reduced concentration of methane (CH4) in samples collected during 48 h of incubation in MMT treatment stands on the reduction in symbiotic activity of methanogenic bacteria and protozoa. Also, the possible reason of reduction in the concentration of ammonia (NH3) in MMT treatment could be associated to damage on protozoa with proteolytic activity. Our results showed that the amount of montmorillonite in rumen fluid influenced negatively the fermentative activity, therefore, delaying the colonization of bacteria in rumen substrate composed of maize and ryegrass hay. Moreover, the use of β-glu (1%) significantly increased the amount of short chain fatty acids such as, acetic acid and butyric acid, with the exception of propionic acid.


Sign in / Sign up

Export Citation Format

Share Document