A performance investigation of small-bore sewers

2007 ◽  
Vol 55 (4) ◽  
pp. 85-91 ◽  
Author(s):  
F.A. Memon ◽  
A. Fidar ◽  
K. Littlewood ◽  
D. Butler ◽  
C. Makropoulos ◽  
...  

This paper describes a full-scale physical model and its application to investigate the effectiveness/performance of small-bore sewers for a range of operational and design parameters. The implementation methodology involves observing the movement of synthetic gross solids in three small bore sewers (150, 100 and 75 mm diameter) for different volumes of simulated flush waves and gradients. The simulated flush waves were generated, using an automated wave sequencer, for three different flush volumes (3, 4.5 and 6 litres). To investigate the impact of solid shape factor, a number of tests were carried out using synthetic solids in combination with toilet tissue paper. In total, more than 1,000 tests were performed for different operational and design parameter combinations. Results obtained to date have confirmed earlier studies, particularly with respect to the role of flush volume in solids transport, and identified the impact of gradient variation and its significance particularly in small-bore sewers receiving low flush volume. Results from the physical model application exercise will be used to propose new design guidelines for wastewater collection systems with specific consideration to new developments and inform the decision support system, currently being developed as part of a research project on water cycle management for new developments (WaND).

Author(s):  
Diana K. Grauer ◽  
Kirby S. Chapman

This paper presents an investigation into the NOX reduction role played by the exhaust manifold of large-bore two stroke cycle engines by exploring the impact of the exhaust manifold design on turbocharger and engine operation. Exhaust manifold performance is defined as the ability of the exhaust manifold to: 1) optimize cylinder scavenging efficiency; and 2) minimize the pressure differential between the compressor discharge and the turbine inlet by exploiting the blow-down pressure pulses and minimizing the static pressure gradient along the exhaust manifold. Pressure pulses in the exhaust manifold have been identified as a plausible mechanism that hinders efficient cylinder scavenging and turbocharger operating range. While modifying the ports and manifold may not be cost effective, a complete understanding of and the ability to address the impact of these pressure waves on turbocharger performance and scavenging efficiency will lead to more reliable engine upgrade projects as the industry approaches the 0.5 g/bhp-hr engine. The research team chose “available energy,” or the amount of mechanical and thermal energy available to the turbocharger turbine for operation as the parameter for defining optimal exhaust manifold design parameters. This allowed the research team to: 1) investigate energy losses in the candidate Clark TLA-6 exhaust removal system on a component basis, and 2) translate the mitigation of these losses into expanded turbocharger operating range. The end point of the project was a set of exhaust manifold design guidelines aimed at maximizing turbocharger performance by way of the defined metrics, scavenging efficiency and waste-gate margin.


Author(s):  
Andrea Giuffre’ ◽  
Matteo Pini

Abstract The impact of non-ideal compressible flows on the fluid-dynamic design of axial turbine stages is examined. First, the classical similarity equation is revised and extended to account for the effect of flow non-ideality and compressibility. Then, the influence of the most relevant design parameters is investigated through the application of a dimensionless turbine stage model embedding a first-principles loss model. The results show that the selection of optimal duty coefficients is scarcely affected by the molecular complexity of the working fluid, whereas compressibility effects produce an offset in the efficiency trends and in the optimal flow coefficient. Furthermore, flow non-ideality can lead to either an increase or a decrease of stage efficiency of the order of 2–3% relative to turbines designed to operate in dilute gas state. This effect can be predicted at preliminary design phase through the evaluation of the isentropic pressure-volume exponent. 3D RANS simulations of selected test cases corroborate the trends predicted with the reduced-order turbine stage model.


Author(s):  
Ca´ssia Cardoso ◽  
Luiz Fernando de Oliveira ◽  
Denise Faertes

The design standards of gas pipeline NBR 12712 and ASME B31.8, although having their own safety factors, had not incorporated explicitly the risk concept for the population in their definitions. However, the orientation of the Brazilian Environment Agencies is that the risk level of transportation activity for gas pipelines must be controlled to the health and the safety of the population. These facts can create a critical management situation because a gas pipeline can be in compliance with the design standards and not in relation to the criteria of the Environment Agencies. In this scenario, the establishment of risk based design guidelines becomes an essential action. In this article, a methodology for the elaboration of these guidelines is presented. We analyze not only the influences of the main operational and design parameters on the risk, but also the impact of the main risk acceptability criteria for the approval of the gas pipelines operation license. The result of this article is an excellent decision management tool on the management and the viability evaluation of this type of project and its application provides important technical knowledge to definitions of routes, operational and design parameters, and the optimized selection of risk reduction measures.


Author(s):  
Byung Kwag ◽  
Moncef Krarti

Abstract This paper investigates the impact of thermal interactions between heat exchangers integrated within building foundation piles to meet space heating and cooling needs of buildings. Specifically, a three-dimensional transient numerical model is developed to evaluate the thermal performance of the foundation piles. The model is used to estimate the temperature variations within the soil medium under various operation conditions of thermo-active foundation (TAF) systems. Then, a series of parametric analyses is carried out to evaluate the influence of design parameters of the piles on the performance of TAF systems, including the interactive effects between piles as well as the impact of these piles on the building slab heat transfer. Then, the parametric analysis results are utilized to develop simplified calculation methods to assess the thermal impacts of the geometric features for the piles on both the performance of TAF systems as well as the building slab heat losses and/or gains. The developed simplified calculation methods are suitable to develop design guidelines in order to enhance the performance of thermal piles to heat and cool buildings.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Duccio Bonaiuti ◽  
Mehrdad Zangeneh

Automatic optimization techniques have been used in recent years for the aerodynamic and mechanical design of turbomachine components. Despite the many advantages, their use is usually limited to simple applications in industrial practice, because of their high computational cost. In this paper, an optimization strategy is presented, which enables the three-dimensional multipoint, multiobjective aerodynamic optimization of turbomachinery blades in a time frame compatible with industrial standards. The design strategy is based on the coupling of three-dimensional inverse design, response surface method, multiobjective evolutionary algorithms, and computational fluid dynamics analyses. The blade parametrization is performed by means of a three-dimensional inverse design method, where aerodynamic parameters, such as the blade loading, are used to describe the blade shape. Such a parametrization allows for a direct control of the aerodynamic flow field and performance, leading to a major advantage in the optimization process. The design method was applied to the redesign of a centrifugal and of an axial compressor stage. The two examples confirmed the validity of the design strategy to perform the three-dimensional optimization of turbomachine components, accounting for both design and off-design performance, in a time-efficient manner. The coupling of response functions and inverse design parametrization also allowed for an easy sensitivity analysis of the impact of the design parameters on the performance ones, contributing to the development of design guidelines that can be exploited for similar design applications.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Andrea Giuffre' ◽  
Matteo Pini

Abstract The impact of non-ideal compressible flows on the fluid-dynamic design of axial turbine stages is examined. First, the classical similarity equation (CSE) is revised and extended to account for the effect of flow non-ideality. Then, the influence of the most relevant design parameters is investigated through the application of a dimensionless turbine stage model embedding a first-principles loss model. The results show that compressibility effects induced by the fluid molecular complexity and the stage volumetric flow ratio produce an offset in the efficiency trends and in the optimal stage layout. Furthermore, flow non-ideality can lead to either an increase or a decrease of stage efficiency up to 3–4% relative to turbines designed to operate in dilute gas state. This effect can be predicted at preliminary design phase through the evaluation of the isentropic pressure–volume exponent. Three-dimensional (3D) RANS simulations of selected test cases corroborate the trends predicted with the reduced-order turbine stage model. URANS computations provide equivalent trends, except for case study niMM1, featuring a non-monotonic variation of the generalized isentropic exponent. For such turbine stage, the efficiency is predicted to be higher than the one computed with any steady-state model based on the control volume approach.


2018 ◽  
Vol 7 (4) ◽  
pp. 209-224
Author(s):  
Chloë Nicholson-Smith ◽  
George K. Knopf ◽  
Evgueni Bordatchev

Abstract Flexible optical sheets are thin large-area polymer light guide structures that can be used to create innovative passive light-harvesting and illumination systems. The optically transparent micro-patterned polymer sheet is designed to be draped over arbitrary surfaces or hung like a curtain. The light guidance sheet is fabricated by bonding two or more micro-patterned layers with different indices of optical refraction. By imprinting micro-optical elements on the constituent layers, it is possible to have portions of the optical sheet act as a light concentrator, near ‘lossless’ transmitter, or diffuser. However, the performance and efficiency of the flexible optical sheet depends on the overall curvature (κ) of the optical sheet and the relative orientation of incident light source. To illustrate this concept, the impact of key design parameters on the controlled guidance of light through a two-layer polydimethylsiloxane (PDMS) concentrator-transmitter-diffuser optical sheet is investigated using ray tracing simulation software. The analysis initially considers a flat (κ=0) PDMS optical sheet exposed to a collimated light source. The impact of sheet curvature (κ>0) on both system efficiency and illumination uniformity is then briefly explored. Critical design guidelines for creating multifunctional monolithic optical sheets are also summarized.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yukiko Hirabayashi ◽  
Haireti Alifu ◽  
Dai Yamazaki ◽  
Yukiko Imada ◽  
Hideo Shiogama ◽  
...  

AbstractThe ongoing increases in anthropogenic radiative forcing have changed the global water cycle and are expected to lead to more intense precipitation extremes and associated floods. However, given the limitations of observations and model simulations, evidence of the impact of anthropogenic climate change on past extreme river discharge is scarce. Here, a large ensemble numerical simulation revealed that 64% (14 of 22 events) of floods analyzed during 2010-2013 were affected by anthropogenic climate change. Four flood events in Asia, Europe, and South America were enhanced within the 90% likelihood range. Of eight snow-induced floods analyzed, three were enhanced and four events were suppressed, indicating that the effects of climate change are more likely to be seen in the snow-induced floods. A global-scale analysis of flood frequency revealed that anthropogenic climate change enhanced the occurrence of floods during 2010-2013 in wide area of northern Eurasia, part of northwestern India, and central Africa, while suppressing the occurrence of floods in part of northeastern Eurasia, southern Africa, central to eastern North America and South America. Since the changes in the occurrence of flooding are the results of several hydrological processes, such as snow melt and changes in seasonal and extreme precipitation, and because a climate change signal is often not detectable from limited observation records, large ensemble discharge simulation provides insights into anthropogenic effects on past fluvial floods.


Author(s):  
Milan Paudel ◽  
Fook Fah Yap

E-scooters are a recent trend and are viewed as a sustainable solution to ease the first and last mile problem in modern transportation. However, an alarming rate of accidents, injuries, and fatalities have caused a significant setback for e-scooters. Many preventive measures and legislation have been put on the e-scooters, but the number of accidents and injuries has not reduced considerably. In this paper, the current design approach of e-scooters has been analyzed, and the most common range of design parameters have been identified. Thereafter, validated mathematical models have been used to quantify the performance of e-scooters and relate them with the safety aspects. Both standing and seated riders on e-scooters have been considered, and their influence on the dynamic performance has been analyzed and compared with the standard 26-in wheel reference safety bicycle. With more than 80% of the accidents and injuries occurring from falling or colliding with obstacles, this paper tries to correlate the dynamics of uncontrolled single-track vehicles with the safety performance of e-scooters. The self-stability, handling, and braking effect have been considered as major performance matrices. The analysis has shown that the current e-scooter designs are not as stable as the reference safety bicycle. Moreover, these e-scooters have been found unstable within the most common range of legislated riding velocity. The results corroborate with the general perception that the current designs of e-scooters are less stable, easy to lose control, twitchy, or wobbly to ride. Furthermore, the standing posture of the rider on the e-scooter has been found dangerous while braking to avoid any disturbances such as potholes or obstacles. Finally, the front steering design guidelines have been proposed to help modify the current design of e-scooters to improve the dynamic performance, hence the safety of the e-scooter riders and the surroundings.


2021 ◽  
Vol 106 (1) ◽  
pp. 881-912
Author(s):  
Jingbo Sun ◽  
Shengwu Qin ◽  
Shuangshuang Qiao ◽  
Yang Chen ◽  
Gang Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document