Elimination of micropollutants and hazardous substances at the source in the chemical and pharmaceutical industry

2007 ◽  
Vol 56 (12) ◽  
pp. 119-123 ◽  
Author(s):  
C. Blöcher

Industrial wastewater, especially from chemical and pharmaceutical production, often contains substances that need to be eliminated before being discharged into a biological treatment plant and following water bodies. This can be done within the production itself, in selected waste water streams or in a central treatment plant. Each of these approaches has certain advantages and disadvantages. Furthermore, a variety of wastewater treatment processes exist that can be applied at each stage, making it a challenging task to choose the best one in economic and ecological terms. In this work a general approach for that and examples from practice are discussed.

2021 ◽  
Vol 3 (2) ◽  
pp. 130-140
Author(s):  
Maria Diana Puiu ◽  

The food industry wastewater is known to present a high organic matter content, due to specific raw materials and processing activities. Even if these compounds are not directly toxic to the environment, high concentrations in effluents could represent a source of pollution as discharges of high biological oxygen demand may impact receiving river's ecosystems. Identifying the main organic contaminants in wastewater samples represents the first step in establishing the optimum treatment method. The sample analysis for the non-target compounds through the GC-MS technique highlights, along with other analytical parameters, the efficiency of the main physical and biological treatment steps of the middle-size Wastewater Treatment Plant (WWTP). Long-chain fatty acids and their esters were the main abundant classes of non-target identified compounds. The highest intensity detection signal was reached by n-hexadecanoic acid or palmitic acid, a component of palm oil, after the physical treatment processes with dissolved air flotation, and by 1-octadecanol after biological treatment.


2014 ◽  
Vol 694 ◽  
pp. 396-405
Author(s):  
Xia Liu ◽  
Hong Wu Wang ◽  
Jin Hong Fan ◽  
Lu Ming Ma ◽  
Jing Xu

Fe/Cu bimetallic process was developed as a new industrial wastewater pretreatment method. It was difficult for an industrial park wastewater treatment plant in Shanghai to treat the wastewater with many refractory pollutants and match the improved discharge standards. The plant needed renovation and adopted Fe/Cu process as a core pretreatment technology. 60,000 tons of wastewater is treated in the plant every day and the average removal rate of COD, BOD, total phosphorous (TP) and color was 73%, 77%, 55% and 48% respectively before renovation. After renovation, the average removal rate of COD, BOD, total phosphorous (TP) and color was reached to 86%, 93%, 76% and 85%, respectively. The engineering practice shows that the removal rate of COD, color and TP in Fe/Cu tank reached 29.7%, 60% and 53.6%. The continuous operating data in two years shows that Fe/Cu process can effectively improve the biodegradability of wastewater and enhanced the subsequent biological treatment. The successful engineering practice indicts that the slag dropping quickly effectively avoid agglomeration and clogging of the Fe/Cu filler and the operating cost is very low.


1986 ◽  
Vol 18 (3) ◽  
pp. 5-16 ◽  
Author(s):  
H. Kiestra ◽  
E. Eggers

A general analysis is made of the current treatment methods for industrial wastewater. Mechanical, physico-chemical and biological treatment processes are discussed and the pros and contras of aerobic versus anaerobic treatment are listed, in terms of BOD and COD reduction, energy demand, operational aspects, land use, sensitivity and sludge production. In general, anaerobic treatment is attractive in cases where wastewater with high BOD concentrations has to be treated while aerobic treatment is less sensitive and allows (de) nitrification in the same reactor. The latest developments in wastewater treatment, such as the ANAMET and the Gist-Brocades systems, are presented. Three cases of industrial wastewater treatment are elaborated, concerning effluents from a tannery, a slaughterhouse and an oil refinery.


2007 ◽  
Vol 55 (12) ◽  
pp. 253-258 ◽  
Author(s):  
A. Ried ◽  
J. Mielcke ◽  
A. Wieland ◽  
S. Schaefer ◽  
M. Sievers

Despite the well-known potential and performance of combined biological and ozonation processes for wastewater treatment, only few full-scale applications are published. Beside the synergistic effects of such process combination, which lead to oxidation of recalcitrant and inhibitory compounds or intermediates by enhancement of their biodegradability, the key for raising applicability is the improvement of the ozonation efficiency. An overview about the history and progress of full-scale applications, which deals with combined ozonation and biological treatment is given. Recently more than 40 applications exist, but many of them are not published. Therefore, a couple of selected not yet published applications have been mentioned in this paper. Landfill leachate and industrial wastewater treatment were mostly applicated, while treatment of municial wastewater treatment plant (WWTP) effluents are of increasing interest due to several advantages such as disinfection, decolourisation and removal of persistent dissolved organic carbon (DOC) for water re-use and groundwater recharge.


2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Dinda Rita K. Hartaja ◽  
Imam Setiadi

Generally, wastewater of nata de coco industry contains suspended solids and COD were high, ranging from 90,000 mg / l. The high level of of the wastewater pollutants, resulting in nata de coco industry can not be directly disposed of its wastewater into the environment agency. Appropriate technology required in order to process the waste water so that the treated water can meet the environmental quality standards that are allowed. Designing the waste water treatment plant that is suitable and efficient for treating industrial wastewater nata de coco is the activated sludge process. Wastewater treatment using activated sludge process of conventional (standard) generally consists of initial sedimentation, aeration and final sedimentation.Keywords : Activated Sludge, Design, IPAL


Author(s):  
N. Zaletova ◽  
S. Zaletov

Биологический метод очистки сточных вод представляет собой сложный многокомпонентный процесс, ключевой составляющей которого является работа ферментной системы. Известно, что одним из важнейших ферментов, обеспечивающих биологический процесс, являются дегидрогеназы. Полностью сложнейший механизм действия ферментов до конца пока не раскрыт, однако в практике контроля процессов биологической очистки используется показатель дегидрогеназной активности ила. Результаты исследований позволили дополнить имеющуюся информацию фактическими данными о взаимообусловленности уровня дегидрогеназной активности ила и показателей отдельных технологических параметров биологической очистки. Показано, что режим работы аэротенков (нагрузка на ил, доза активного ила и др.) и величина показателей исходной дегидрогеназной активности и дегидрогеназной активности этого же образца ила со слабо концентрированным раствором (ДАИН2О) связаны между собой и зависят от нагрузки на ил по органическим веществам. Полученные результаты исследования могут быть использованы для контроля биологического процесса очистки сточных вод.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.


1994 ◽  
Vol 30 (5) ◽  
pp. 87-95 ◽  
Author(s):  
Susan E. Murcott ◽  
Donald R. F. Harleman

In the past decade, the development of polymers and new chemical technologies has opened the way to using low doses of chemicals in wastewater treatment. “Chemical upgrading” (CU) is defined in this paper as an application of these chemical technologies to upgrade overloaded treatment systems (typically consisting of conventional primary plus biological treatment) in Central and Eastern European (CEE) countries. Although some of the chemical treatment technologies are proven ones in North America, Scandinavia, and Germany, a host of factors, for example, the variations in composition and degree of pollution, the type of technologies in use, the type and mix of industrial and domestic sewage, and the amount of surface water, had meant that the viability of using CU in CEE countries was unknown. This report describes the first jar tests of CU conducted during the summer of 1993. The experiments show CU's ability to improve wastewater treatment plant performance and to potentially assist in the significant problem of overloaded treatment plants. Increased removal of BOD, TSS, and P in the primary stage of treatment is obtained at overflow rates above 1.5 m/h, using reasonably priced, local sources of metal salts in concentrations of 25 to 50 mg/l without polymers.


Sign in / Sign up

Export Citation Format

Share Document