Utilization of activated sludge plants for enhanced treatment of combined sewage

2008 ◽  
Vol 58 (8) ◽  
pp. 1569-1574
Author(s):  
B. Nikolavcic ◽  
K. Svardal ◽  
G. Wandl ◽  
N. Günther ◽  
G. Spatzierer

A process is introduced which utilizes secondary clarifiers for the treatment of combined sewage. Under storm water conditions, surplus sewage bypasses the aeration tanks after primary treatment and is directly introduced into the secondary clarifiers. The hydraulic capacity of existing activated sludge plants can be increased without additional tank volume. Particulate matter as well as dissolved compounds are removed to a high extent. Investigations on a full scale treatment plant (100,000 p.e.) show that the effluent quality is comparable with full biological treatment, even if the hydraulic loading is increased by 50%.

1995 ◽  
Vol 32 (9-10) ◽  
pp. 75-84 ◽  
Author(s):  
A. D. Andreadakis ◽  
G. H. Kristensen ◽  
A. Papadopoulos ◽  
C. Oikonomopoulos

The wastewater from the city of Thessaloniki is discharged without treatment to the nearby inner part of the Thessaloniki Gulf. The existing, since 1989, treatment plant offers only primary treatment and did not operate since the expected effluent quality is not suitable for safe disposal to the available recipients. Upgrading of the plant for advanced biological treatment, including seasonal nitrogen removal, is due from 1995. In the mean time, after minor modifications completed in February 1992, the existing plant was put into operation as a two-stage chemical-biological treatment plant for 40 000 m3 d−1, which corresponds to about 35% of the total sewage flow. The operational results obtained during the two years operation period are presented and evaluated. All sewage and sludge treatment units of the plant perform better than expected, with the exception of the poor sludge settling characteristics, due to severe and persistent bulking caused by excessive growth of filamentous microorganisms, particularly M. Parvicella. Effective control of the bulking problem could lead to more cost-effective operation and increased influent flows.


2001 ◽  
Vol 44 (1) ◽  
pp. 33-39 ◽  
Author(s):  
O. Tornes

Norway is a leading country on wastewater treatment comprising chemical precipitation processes. This is because Norwegian effluent standards to the North Sea have traditionally focused on phosphorus removal. In most cases, chemical treatment therefore has been considered to give lower investment and operating costs than biological treatment. Norwegian wastewater policy and management is based on the EU guidelines resulting from the EEA (European Economic Area) Agreement. According to the 1991 Urban Wastewater Treatment Directive, this will in most cases require secondary treatment. However, primary treatment can be accepted for plants larger than 10,000 PT with effluents to less sensitive coastal areas, if no negative environmental impacts can be proved. The main objective of the Regional Water, Sewerage and Waste Company (IVAR) is to comply with the prevailing effluent limits at lowest possible cost. During the past four years, IVAR has therefore undertaken comprehensive optimising of the precipitation process including full-scale experiments with different coagulant dosing control systems and different types of coagulants. IVAR also accomplished a feasibility study of introducing biological treatment as an alternative to chemical treatment. Under the prevailing frame conditions of discharge requirements and sludge deposit costs, it is not economically feasible to change to organic coagulants or biological treatment. This conclusion might have to be altered later resulting from the implementation of new EU regulations and increasing sludge deposit costs. This paper presents results from full-scale experiments, extracts from the feasibility study and a comparison of costs. Furthermore, the practical consequences of implementing the EU-guidelines are discussed.


2006 ◽  
Vol 54 (10) ◽  
pp. 201-208 ◽  
Author(s):  
B.-M. Wilén ◽  
D. Lumley ◽  
A. Mattsson ◽  
T. Mino

The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 131-138
Author(s):  
Ahmed Fadel

Many of Egypt's cities have existing treatment plants under operation that have been constructed before 1970. Almost all of these treatment plants now need rehabilitation and upgrading to extend their services for a longer period. One of these plants is the Beni Suef City Wastewater Treatment Plant. The Beni Suef WWTP was constructed in 1956. It has primary treatment followed by secondary treatment employing intermediate rate trickling filters. The BOD, COD, and SS concentration levels are relatively high. They are approximately 800, 1100, and 600 mg/litre, respectively. The Beni Suef city required the determination of the level of work needed for the rehabilitation and upgrading of the existing 200 l/s plant and to extend its capacity to 440 l/s at year 2000 A description of the existing units, their deficiencies and operation problems, and the required rehabilitation are presented and discussed in this paper. Major problems facing the upgrading were the lack of space for expansion and the shortage of funds. It was, therefore, necessary to study several alternative solutions and methods of treatment. The choice of alternatives was from one of the following schemes: a) changing the filter medium, its mode of operation and increasing the number of units, b) changing the trickling filter to high rate and combining it with the activated sludge process, for operation by one of several possible combinations such as: trickling filter-solids contact, roughing filter-activated sludge, and trickling filter-activated sludge process, c) dividing the flow into two parts, the first part to be treated using the existing system and the second part to be treated by activated sludge process, and d) expanding the existing system by increasing the numbers of the different process units. The selection of the alternative was based on technical, operational and economic evaluations. The different alternatives were compared on the basis of system costs, shock load handling, treatment plant operation and predicted effluent quality. The flow schemes for the alternatives are presented. The methodology of selecting the best alternative is discussed. From the study it was concluded that the first alternative is the most reliable from the point of view of costs, handling shock load, and operation.


2008 ◽  
Vol 57 (8) ◽  
pp. 1287-1293 ◽  
Author(s):  
A. Jobbágy ◽  
G. M. Tardy ◽  
Gy. Palkó ◽  
A. Benáková ◽  
O. Krhutková ◽  
...  

The purpose of the experiments was to increase the rate of activated sludge denitrification in the combined biological treatment system of the Southpest Wastewater Treatment Plant in order to gain savings in cost and energy and improve process efficiency. Initial profile measurements revealed excess denitrification capacity of the preclarified wastewater. As a consequence, flow of nitrification filter effluent recirculated to the anoxic activated sludge basins was increased from 23,000 m3 d−1 to 42,288 m3 d−1 at an average preclarified influent flow of 64,843 m3 d−1, Both simulation studies and microbiological investigations suggested that activated sludge nitrification, achieved despite the low SRT (2–3 days), was initiated by the backseeding from the nitrification filters and facilitated by the decreased oxygen demand of the influent organics used for denitrification. With the improved activated sludge denitrification, methanol demand could be decreased to about half of the initial value. With the increased efficiency of the activated sludge pre-denitrification, plant effluent COD levels decreased from 40–70 mg l−1 to < 30–45 mg l−1 due to the decreased likelihood of methanol overdosing in the denitrification filter


2012 ◽  
Vol 7 (1) ◽  
Author(s):  
S. S. Fatima ◽  
S. Jamal Khan

In this study, the performance of wastewater treatment plant located at sector I-9 Islamabad, Pakistan, was evaluated. This full scale domestic wastewater treatment plant is based on conventional activated sludge process. The parameters which were monitored regularly included total suspended solids (TSS), mixed liquor suspended solids (MLSS), mixed liquor volatile suspended solids (MLVSS), biological oxygen demand (BOD), and chemical oxygen demand (COD). It was found that the biological degradation efficiency of the plant was below the desired levels in terms of COD and BOD. Also the plant operators were not maintaining consistent sludge retention time (SRT). Abrupt discharge of MLSS through the Surplus Activated sludge (SAS) pump was the main reason for the low MLSS in the aeration tank and consequently low treatment performance. In this study the SRT was optimized based on desired MLSS concentration between 3,000–3,500 mg/L and required performance in terms of BOD, COD and TSS. This study revealed that SRT is a very important operational parameter and its knowledge and correct implementation by the plant operators should be mandatory.


2017 ◽  
Vol 77 (1) ◽  
pp. 70-78 ◽  
Author(s):  
Yanjun Mao ◽  
Xie Quan ◽  
Huimin Zhao ◽  
Yaobin Zhang ◽  
Shuo Chen ◽  
...  

Abstract The activated sludge (AS) process is widely applied in dyestuff wastewater treatment plants (WWTPs); however, the nitrogen removal efficiency is relatively low and the effluent does not meet the indirect discharge standards before being discharged into the industrial park's WWTP. Hence it is necessary to upgrade the WWTP with more advanced technologies. Moving bed biofilm processes with suspended carriers in an aerobic tank are promising methods due to enhanced nitrification and denitrification. Herein, a pilot-scale integrated free-floating biofilm and activated sludge (IFFAS) process was employed to investigate the feasibility of enhancing nitrogen removal efficiency at different hydraulic retention times (HRTs). The results showed that the effluent chemical oxygen demand (COD), ammonium nitrate (NH4+-N) and total nitrogen (TN) concentrations of the IFFAS process were significantly lower than those of the AS process, and could meet the indirect discharge standards. PCR-DGGE and FISH results indicated that more nitrifiers and denitrifiers co-existed in the IFFAS system, promoting simultaneous nitrification and denitrification. Based on the pilot results, the IFFAS process was used to upgrade the full-scale AS process, and the effluent COD, NH4+-N and TN of the IFFAS process were 91–291 mg/L, 10.6–28.7 mg/L and 18.9–48.6 mg/L, stably meeting the indirect discharge standards and demonstrating the advantages of IFFAS in dyestuff wastewater treatment.


2018 ◽  
Vol 78 (3) ◽  
pp. 644-654 ◽  
Author(s):  
J. Olsson ◽  
S. Schwede ◽  
E. Nehrenheim ◽  
E. Thorin

Abstract A mix of microalgae and bacteria was cultivated on pre-sedimented municipal wastewater in a continuous operated microalgae-activated sludge process. The excess material from the process was co-digested with primary sludge in mesophilic and thermophilic conditions in semi-continuous mode (5 L digesters). Two reference digesters (5 L digesters) fed with waste-activated sludge (WAS) and primary sludge were operated in parallel. The methane yield was slightly reduced (≈10%) when the microalgal-bacterial substrate was used in place of the WAS in thermophilic conditions, but remained approximately similar in mesophilic conditions. The uptake of heavy metals was higher with the microalgal-bacterial substrate in comparison to the WAS, which resulted in higher levels of heavy metals in the digestates. The addition of microalgal-bacterial substrate enhanced the dewaterability in thermophilic conditions. Finally, excess heat can be recovered in both mesophilic and thermophilic conditions.


1994 ◽  
Vol 30 (3) ◽  
pp. 21-28 ◽  
Author(s):  
Nyuk-Min Chong

Mono- and Di- hydroxyl amines are used in the desulfuration processes for refined petroleum products. The refinery wastewater treatment plant may be shocked by amine laden wastewater periodically, bringing operation difficulties to the biological treatment units. Data on the treatability, shock load behaviour and on long term system stability of biological treatment of amines are therefore required. Shake-flask test results showed that pure diethanol amine and diisopropanol amines have characteristics of persistent compounds. Each of the two compounds has a prolonged lag time when first inoculated with indigenous activated sludge. Acclimated activated sludge in a continuous flow reactor treated a feed of ethanol amine with a 93 percent COD removal and a 98 percent nitrification, but the system was unstable because amine caused a bulking sludge. By physical retention of the activated sludge, 550 mg/l influent COD of amines was treated to m1 average 50 mg/l effluent COD. Sludge yield was approximately 0.26 mg MLSS per mg COD. The activated sludge system withstood a chm1ge of feed to a real refinery wastewater laden with the; amine. A mean cell residence time above five (5) days should be maintained for safe treatment of; amine.


2018 ◽  
Vol 85 (5) ◽  
Author(s):  
Veronica R. Brand ◽  
Laurel D. Crosby ◽  
Craig S. Criddle

ABSTRACTMultiple clades within a microbial taxon often coexist within natural and engineered environments. Because closely related clades have similar metabolic potential, it is unclear how diversity is sustained and what factors drive niche differentiation. In this study, we retrieved three near-complete Competibacter lineage genomes from activated sludge metagenomes at a full-scale pure oxygen activated sludge wastewater treatment plant. The three genomes represent unique taxa within theCompetibacteraceae. A comparison of the genomes revealed differences in capacity for exopolysaccharide (EPS) biosynthesis, glucose fermentation to lactate, and motility. Using quantitative PCR (qPCR), we monitored these clades over a 2-year period. The clade possessing genes for motility and lacking genes for EPS biosynthesis (CPB_P15) was dominant during periods of suspended solids in the effluent. Further analysis of operational parameters indicate that the dominance of the CPB_P15 clade is associated with low-return activated sludge recycle rates and low wasting rates, conditions that maintain relatively high levels of biomass within the system.IMPORTANCEMembers of the Competibacter lineage are relevant in biotechnology as glycogen-accumulating organisms (GAOs). Here, we document the presence of threeCompetibacteraceaeclades in a full-scale activated sludge wastewater treatment plant and their linkage to specific operational conditions. We find evidence for niche differentiation among the three clades with temporal variability in clade dominance that correlates with operational changes at the treatment plant. Specifically, we observe episodic dominance of a likely motile clade during periods of elevated effluent turbidity, as well as episodic dominance of closely related nonmotile clades that likely enhance floc formation during periods of low effluent turbidity.


Sign in / Sign up

Export Citation Format

Share Document