Sorption of Pb(II) by poly(hydroxamic acid) grafted oil palm empty fruit bunch

2011 ◽  
Vol 63 (8) ◽  
pp. 1788-1793
Author(s):  
M. J. Haron ◽  
M. Tiansin ◽  
N. A. Ibrahim ◽  
A. Kassim ◽  
W. M. Z. Wan Yunus ◽  
...  

This paper describes the sorption of Pb(II) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(II) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g−1 at 25°C. The sorption process was exothermic, as shown by the negative value of enthalpy change, ΔH0. The free energy change (ΔG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(II) sorption followed a second order kinetic model.

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2177
Author(s):  
Easar Alam ◽  
Qiyan Feng ◽  
Hong Yang ◽  
Jiaxi Fan ◽  
Sameena Mumtaz ◽  
...  

In this study, iron oxide (Fe3O4) was coated with ZrO2, and doped with three rare earth elements((Y/La/Ce), and a multi-staged rare earth doped zirconia adsorbent was prepared by using uniform design U14, Response Surface methodology, and orthogonal design, to remove As3+ and As5+ from the aqueous solution. Based on the results of TEM, EDS, XRD, FTIR, and N2-adsorption desorption test, the best molar ratio of Fe3O4:TMAOH:Zirconium butoxide:Y:La:Ce was selected as 1:12:11:1:0.02:0.08. The specific surface area and porosity was 263 m2/g, and 0.156 cm3/g, respectively. The isothermal curves and fitting equation parameters show that Langmuir model, and Redlich Peterson model fitted well. As per calculations of the Langmuir model, the highest adsorption capacities for As3+ and As5+ ions were recorded as 68.33 mg/g, 84.23 mg/g, respectively. The fitting curves and equations of the kinetic models favors the quasi second order kinetic model. Material regeneration was very effective, and even in the last cycle the regeneration capacities of both As3+ and As5+ were 75.15%, and 77.59%, respectively. Adsorption and regeneration results suggest that adsorbent has easy synthesis method, and reusable, so it can be used as a potential adsorbent for the removal of arsenic from aqueous solution.


2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Sayed S. Metwally ◽  
Hoda E. Rizk ◽  
Mona S. Gasser

AbstractGreen composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Fadi Alakhras

Lanthanide metal ions make distinctive and essential contributions to recent global proficiency. Extraction and reuse of these ions is of immense significance especially when the supply is restricted. In light of sorption technology, poly(amidoxime-hydroxamic) acid sorbents are synthesized and utilized for the removal of various lanthanide ions (La3+, Nd3+, Sm3+, Gd3+, and Tb3+) from aqueous solutions. The sorption speed of trivalent lanthanides (Ln3+) depending on the contact period is studied by a batch equilibrium method. The results reveal fast rates of metal ion uptake with highest percentage being achieved after 15–30 min. The interaction of poly(amidoxime-hydroxamic) acid sorbent with Ln3+ ions follows the pseudo-second-order kinetic model with a correlation coefficient R2 extremely high and close to unity. Intraparticle diffusion data provide three linear plots indicating that the sorption process is affected by two or more steps, and the intraparticle diffusion rate constants are raised among reduction of ionic radius of the studied lanthanides.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
A. O. Adebayo ◽  
O. O. Ajayi

Biosorption of Pb(II) ions from aqueous solution by cow hooves (CHs) was investigated as a function of initial pH, contact time, and biosorbent dosage through batch studies. Equilibrium experiments were performed at three different temperatures (298, 308, and 318 K) using initial Pb2+ concentration ranging from 15 to 100 mgg−1. This study revealed that maximum uptake (96.2% removal) of Pb2+ took place within 30 minutes of agitation, and the process was brought to equilibrium within 60 minutes of equilibration. The equilibrium data were modelled using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir isotherm model fitted the data best at all temperatures considered. The Lagergren second-order kinetic model fitted the biosorption process better than the first-order model. The negative values obtained for both Gibb’s free energy change and enthalpy change are an indication of the spontaneous and exothermic nature of the sorption of Pb2+ onto CH. A study of the FTIR spectral obtained before and after Pb2+ sorption showed that carbonyl, hydroxyl, amino, and carboxyl groups were involved in the sorption process.


2021 ◽  
Vol 46 (2) ◽  
Author(s):  
O.K. Amadi ◽  
F.K. Ekuma ◽  
B. N. Uche

This study investigates the biosorption of Ni2+, Cd2+ and Pb2+ from aqueous solution by modified Newbouldia Leavis seed pod. The modification was done by acid treating air-dried activated Newbouldia Leavis seed pod by dissolving it in excess 1.0 M Mercapto acetic acid (HSCH2COOH) solution, stirred for 30 minutes and left to stand for 24 hours at 30 oC, filtered off using WhatmanNo. 41 filter paper and were air dried. The effects of solution pH and contact time were evaluated. The results showed that maximum Cd2+ and Ni2+ adsorption of 7.9872 mg/g and 7.9809 mg/g respectively occurred at pH of 6.0 while that of Pb2+ was 8.0000 mg/g, at a pH of 4.0. The optimum time for maximum adsorption of the three heavy metal ions were 110 min. The kinetic data revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots were unity and were higher than first order reversible model and pseudo – first order plots. Moreover, the values of qcal and qexp obtained for pseudo – second order plots were very close indicating that the biosorption process followed the pseudo-second order kinetics. However, the transport mechanism for the process involved both intra-particle and liquid film diffusion.


2013 ◽  
Vol 295-298 ◽  
pp. 1154-1160 ◽  
Author(s):  
Guo Zhi Deng ◽  
Xue Yuan Wang ◽  
Xian Yang Shi ◽  
Qian Qian Hong

The objective of this paper is to investigate the feasibility of phenol adsorption from aqueous solution by Pinus massoniana biochar. Adsorption conditions, including contact time, initial phenol concentration, adsorbent dosage, strength of salt ions and pH, have been investigated by batch experiments. Equilibrium can be reached in 24 h for phenol from 50 to 250 mg• L-1. The optimum pH value for this kind of biochar is 5.0. The amount of phenol adsorbed per unit decreases with the increase in adsorbent dosage. The existence of salt ions makes negligible influence on the equilibrium adsorption capacity. The experimental data is analyzed by the Freundlich and Langmuir isotherm models. Equilibrium data fits well to the Freundlich model. Adsorption kinetics models are deduced and the pseudo-second-order kinetic model provides a good correlation for the adsorbent process. The results show that the Pinus massoniana biochar can be utilized as an effective adsorption material for the removal of phenol from aqueous solution.


2021 ◽  
pp. 2151037
Author(s):  
Yu Meng ◽  
Qing Zhong ◽  
Arzugul Muslim

Because −NH2 and −NH− in poly-[Formula: see text]-phenylenediamine (P[Formula: see text]PD) can interact strongly with the empty orbitals of Cu to show unique electrochemical activity, P[Formula: see text]PD is suitable for the removal of Cu[Formula: see text] by electrochemical oxidation–reduction process. In this study, with P[Formula: see text]PD and its carbon dot composite (CDs/P[Formula: see text]PD) as working electrodes, the electrochemical reduction and removal of Cu[Formula: see text] in the aqueous solution were carried out with the potentiostatic method. According to effects of voltage, pH of the solution, initial concentration of Cu[Formula: see text], and electrochemical reduction time on the Cu[Formula: see text] removal, the Cu[Formula: see text] removal ratios of P[Formula: see text]PD and CDs/P[Formula: see text]PD were up to 64.69% and 73.34%, respectively, at −0.2 V and the optimal pH. Additionally, results showed that these processes were in line with the quasi-first order kinetic model. Both P[Formula: see text]PD and CDs/P[Formula: see text]PD showed good reproducibility in six cycles. After five times of repeated usage, the regeneration efficiencies of P[Formula: see text]PD and CDs/P[Formula: see text]PD dropped to 77.04% and 79.36%, respectively.


2014 ◽  
Vol 225 (10) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zulkifli Yusop

2013 ◽  
Vol 726-731 ◽  
pp. 2100-2106 ◽  
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Shou Rui Yuan

Activated carbon prepared from grapefruit peel, an agricultural solid waste by-product, has been used for the adsorption of Cr(VI) from aqueous solution. The effects of adsorbent dosage, pH and temperature on adsorption of Cr(VI) were investigated. The maximum adsorption yield was obtained at the initial pH of 3. The dynamical data fit very well with the pseudo-second-order kinetic model and the calculated adsorption capacities (23.98, 24.33 and 24.81 mg/g) were in good agreement with experiment results at 20°C, 30°C and 40 °C for the 100 mg/L Cr(VI) solution. The Freundlich model (R2 values were 0.9198-0.9871) fitted adsorption data better than the Langmuir model. The calculated parameters confirmed the favorable adsorption of Cr(VI) on the activated carbon prepared from grapefruit peel.


2011 ◽  
Vol 6 (3) ◽  
pp. 155892501100600 ◽  
Author(s):  
Fang Li ◽  
Chunmei Ding

Different degree of deacetylation (DD) chitosan was prepared and used for the removal of a Reactive black M-2R (RBM) from aqueous solution. The effects of temperature (298 K~323 K), chitosan dosage, degree of deacetylation on RBM removal were investigated. The adsorption equilibrium was reached within one hour. In order to determine the adsorption capacity, the sorption data were analyzed by using linear form of Langmuir, Freundlich and Tempkin isotherm equation. Langmuir equation shows higher conformity than the other two equations. From the kinetic experiment data, it was found that the sorption process follows the pseudo-second-order kinetic model. Activation energy value for sorption process was found to be 58.28 kJ mol-1. Chitosan with 66% deacetylation degree (DD) exhibited good adsorption performance for RBM. In order to determine the interactions between RBM and chitosan, FTIR analysis was also conducted.


Sign in / Sign up

Export Citation Format

Share Document