Integrating anaerobic processes into wastewater treatment

2011 ◽  
Vol 63 (7) ◽  
pp. 1459-1466 ◽  
Author(s):  
E. J. McAdam ◽  
D. Lüffler ◽  
N. Martin-Garcia ◽  
A. L. Eusebi ◽  
J. N. Lester ◽  
...  

Over the past decade, the concept of anaerobic processes for the treatment of low temperature domestic wastewater has been introduced. This paper uses a developed wastewater flowsheet model and experimental data from several pilot scale studies to establish the impact of integrating anaerobic process into the wastewater flowsheet. The results demonstrate that, by integrating an expanded granular sludge blanket reactor to treat settled wastewater upstream of the activated sludge process, an immediate reduction in imported electricity of 62.5% may be achieved for a treated flow of c. 10,000 m3 d−1. This proposed modification to the flowsheet offers potential synergies with novel unit processes including physico-chemical ammonia removal and dissolved methane recovery. Incorporating either of these unit operations can potentially further improve the flowsheet net energy balance to between +0.037 and +0.078 kWh m−3 of produced water. The impact of these secondary unit operations is significant as it is this contribution to the net energy balance that facilitates the shift from energy negative to energy positive wastewater treatment.

2020 ◽  
Vol 5 (1) ◽  
pp. 27-35
Author(s):  
Fivi Elvira Sirajuddin ◽  
Muhammad Fadly Saleh

This experimental study aims to determine the most optimal biofiltration media composition for domestic wastewater treatment using 4 upflow biofilter reactors with a combining pumice and coconut shell charcoal as an media filter. ,The combination ratio of media filter is UAF 1 = 1: 0, UAF 2 = 2: 1, UAF 3 = 1: 2, and UAF 4 = 1 : 1 with an overall filter media thickness of 60 cm. Sampling time is done every 2 days for 16 day were taken at the four experimental reactors to be tested for each parameter of pH, COD, nitrate and ammonia. The method of analysis carried out after obtaining data from testing in the laboratory, that is descriptively related to variations in filter media, and the residence time of wastewater in the reactor. The results showed that the reactor with the best processing in normalizing pH was UAF 1. While the best filter media composition in COD and nitrate removal was UAF 3 reactor with 77.78% and 87.17% removal results. Ammonia removal occurred throughout the experimental reactor with a result <-0.05 mg / l was considered quite good and indicated the decomposition process was successful. Penelitian ini dilakukan untuk menentukan komposisi media biofiltrasi yang paling optimal untuk pengolahan air limbah domestik dengan menggunakan 4 reaktor upflow biofilter dengan mengkombinasikan batu apung dan arang tempurung kelapa sebagai media filter. Rasio dari kombinasi media filter tersebut adalah UAF 1 = 1:0, UAF 2 = 2:1, UAF 3=1:2, dan UAF 4=1:1 dengan ketebalan media filter secara keseluruhan 60 cm. Waktu pengambilan sampel dilakukan setiap 2 hari selama 16 hari. Pengambilan sampel dilakukan pada keempat reaktor percobaan untuk diujikan masing-masing parameter pH, COD, nitrat dan amoniak. Metode analisa yang dilakukan setelah mendapatkan data dari pengujian di laboratorium, yaitu secara deskriptif terkait dengan variasi media filter, dan waktu tinggal air limbah dalam reaktor. Hasil penelitian menunjukkan reaktor yang paling baik pengolahannya dalam menormalkan pH adalah UAF 1. Sementara komposisi media filter yang paling baik dalam penyisihan COD dan nitrat adalah reaktor UAF 3 dengan hasil penyisihan sebesar 77,78% dam 87,17%. Penyisihan amoniak terjadi di seluruh reaktor percobaan dengan hasil <-0,05 mg/l dinilai cukup baik dan mengindikasikan proses penguraian polutan berjalan dengan baik.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 184 ◽  
Author(s):  
Anie Yulistyorini ◽  
Miller Camargo-Valero ◽  
Sukarni Sukarni ◽  
Nugroho Suryoputro ◽  
Mujiyono Mujiyono ◽  
...  

In order to assess the impact of the Sanitation by Communities (SANIMAS) program for community-led sanitation in Indonesia (established in 2002), this research work was conducted with the aim of characterizing the current performance of anaerobic baffled reactors (ABRs), which were deployed in high numbers for the provision of domestic wastewater treatment in densely populated urban areas in Malang (Indonesia). Small and decentralized sewage treatment facilities serve ≈3% of the total population in Malang, including 89 ABR treatment plants. Our findings reveal that only 14% of the 89 ABRs in Malang have an acceptable performance with regard to pollutant removal and integrity of their building structure, but the majority of them produce a treated effluent of poor quality, according to discharge consents set by the Ministry of Environment and Forestry of the Republic of Indonesia (Regulation No. P.68/2016). Clearly the lack of consistent operation and maintenance practices have had a detrimental effect on these decentralized sewage treatment systems, despite their robustness and buffer capacity to cope with changes in organic and hydraulic loading rates. Urbanization will continue to exert pressure on the provision of sanitation services in lower and middle economies, and the role of decentralized sewage management systems is expected to be prominent in the UN’s Sustainable Development Goals era (2015–2030); however, sustainable service delivery must be conceived beyond the provision of sanitation infrastructure.


Author(s):  
Sílvia Letícia Oliveira Toledo ◽  
Renata Michelle Silveira Silva ◽  
Isabella Cristina Rodrigues dos Santos ◽  
William Gustavo Lima ◽  
Leticia Gonçalves Rodrigues Ferreira ◽  
...  

Staphylococcus aureus is one of the main bacteria that affect human health. Its reduced susceptibility to beta-lactam antibiotics has driven the clinical use of macrolides and lincosamides. However, the presence of macrolide-lincosamide-streptogramin B (MLSB)-resistant S. aureus strains is increasingly common. Wastewater treatment plants (WWTPs) are the main anthropogenic source of resistance determinants. However, few studies have assessed the importance of this environment on the dissemination of MLSB-resistant S. aureus strains. Thus, we aimed to evaluate the impact of a domestic WWTP on the resistance to MLSB and penicillin in S. aureus in southeast Brazil. Of the 35 isolates tested, 40.6% were resistant to penicillin. Resistance to erythromycin (8.6%) and quinolones (2.8%) was less common. Despite the low rate of resistance to clindamycin (2.8%), many isolates showed reduced susceptibility to this antibiotic (57.1%). Regarding the resistance phenotypes of staphylococci isolates, inducible MLSB resistance (D-test positive) was found in two isolates. In addition, 27 S. aureus isolates showed the ability to produce penicillinase. In this article, we report for the first time the importance of WWTPs in the dissemination of MSLB resistance among S. aureus from southeast Brazil.


2000 ◽  
Vol 78 (9) ◽  
pp. 1604-1615 ◽  
Author(s):  
Helen M Armstrong ◽  
Antony Robertson

Published relationships were used to build a mathematical model that predicts the daily net energy balance of free-ranging domestic sheep (Ovis aries L.) grazing in the U.K. hills. Net energy balance was predicted for a plausible range of environmental conditions. The behaviour of the model suggested the following predictions. Locomotion will be a relatively unimportant energetic cost. Ambient temperature and rainfall alone will rarely affect energy expenditure, whereas wind will greatly increase energetic costs in winter. These are further increased, but to a relatively small extent, by any concurrent rainfall. Predictions of foraging behaviour based on maximisation of energy intake alone are likely to significantly overestimate dry matter intake from climatically exposed vegetation in winter. Where shelter is available, such models will also overestimate total intake in winter by not taking account of sheltering behaviour. This effect will be most pronounced when forage is of low digestibility or availability, wind speeds are high, or the level of coat insulation is low. Foraging models based instead on maximisation of net energy balance are likely to greatly improve predictions of the impact of large herbivores on vegetation and the mechanisms driving their population dynamics.


Author(s):  
Işık Kabdaşlı ◽  
Sezen Kuşçuoğlu ◽  
Olcay Tünay ◽  
Alessio Siciliano

The impact of nutrients on the environment, particularly on water bodies, has led to extensive studies for nutrient control. Within this context, studies have been focused on source separation of human urine from domestic wastewater to recover nutrients. Potassium is one of the most important components of human urine. However, data on potassium removal or recovery are quite limited except for some indirect information through use of zeolites for mostly ammonia removal. Potassium struvite or K-struvite (MgKPO4&middot;6H2O) is a sparingly soluble salt belonging to struvite and has the potential of being used as a means of potassium and phosphate recovery from segregated human urine. This study aimed to assess the potential of K-struvite precipitation for control and recovery of nutrients. Within this context, K-struvite precipitation experiments were performed on both synthetically prepared samples and synthetic human urine solution to determine effect of operation parameters i.e. pH, stoichiometry, and temperature on potassium recovery performance. Results indicated that process performance as well as type of solid phases co-precipitated with K-struvite were closely related to initial potassium concentration, pH and reaction stoichiometry. At pH 10, the potassium recovery efficiency was maximized up to 87% by application of 100% excess dose of Mg and P for both synthetic samples and synthetic human urine solution. On the other hand, application of excess dose of K did not provide any improvement in K recovery efficiency. The effect of temperature on solubility of K-struvite was insignificant at the temperature of 24-90&deg;C. Solid phase analyses confirmed that K-struvite was co-precipitated with either Mg3(PO4)2, MgNaPO4&middot;7H2O, or MgHPO4&middot;7H2O depending on pH and stoichiometry instead of a pure compound.


Sign in / Sign up

Export Citation Format

Share Document