Removal of cyanobacterial metabolites through wastewater treatment plant filters

2012 ◽  
Vol 65 (7) ◽  
pp. 1244-1251 ◽  
Author(s):  
Lionel Ho ◽  
Daniel Hoefel ◽  
Charlotte Grasset ◽  
Sebastien Palazot ◽  
Gayle Newcombe ◽  
...  

Wastewaters have the potential to proliferate excessive numbers of cyanobacteria due to high nutrient levels. This could translate to the production of metabolites, such as the saxitoxins, geosmin and 2-methylisoborneol (MIB), which can impair the quality of wastewater destined for re-use. Biological sand filtration was assessed for its ability to remove these metabolites from a wastewater. Results indicated that the sand filter was incapable of effectively removing the saxitoxins and in some instances, the effluent of the sand filter displayed greater toxicity than the influent. Conversely, the sand filter was able to effectively remove geosmin and MIB, with removal attributed to biodegradation. Granular activated carbon was employed as an alternative filter medium to remove the saxitoxins. Results showed similar removals to previous drinking water studies, where efficient removals were initially observed, followed by a decrease in the removal; a consequence of the presence of competing organics which reduced adsorption of the saxitoxins.

2012 ◽  
Vol 66 (10) ◽  
pp. 2185-2193 ◽  
Author(s):  
Yi-Che Hsu ◽  
Hsin-Hsu Huang ◽  
Yu-De Huang ◽  
Ching-Ping Chu ◽  
Yu-Jen Chung ◽  
...  

Water shortage has become an emerging environmental issue. Reclamation of the effluent from municipal wastewater treatment plant (WWTP) is feasible for meeting the growth of water requirement from industries. In this study, the results of a pilot-plant setting in Futian wastewater treatment plant (Taichung, Taiwan) were presented. Two processes, sand filter – ultrafiltration – reverse osmosis (SF-UF-RO) and sand filter – electrodialysis reversal (SF-EDR), were operated in parallel to evaluate their stability and filtrate quality. It has been noticed that EDR could accept inflow with worse quality and thus required less pretreatment compared with RO. During the operation, EDR required more frequent chemical cleaning (every 3 weeks) than RO did (every 3 months). For the filtrate quality, the desalination efficiency of SF-EDR ranged from 75 to 80% in continuous operation mode, while the conductivity ranged from 100 to 120 μS/cm, with turbidity at 0.8 NTU and total organic carbon at 1.3 mg/L. SF-EDR was less efficient in desalinating the multivalent ions than SF-UF-RO was. However for the monovalent ions, the performances of the two processes were similar to each other. Noticeably, total trihalomethanes in SF-EDR filtrate was lower than that of SF-UF-RO, probably because the polarization effects formed on the concentrated side of the EDR membrane were not significant. At the end of this study, cost analysis was also conducted to compare the capital requirement of building a full-scale wastewater reclamation plant using the two processes. The results showed that using SF-EDR may cost less than using SF-UF-RO, if the users were to accept the filtrate quality of SF-EDR.


Author(s):  
R. Babko ◽  
V. Pliashechnyk ◽  
T. Kuzmina ◽  
Y. Danko ◽  
J. Szulżyk-Cieplak ◽  
...  

Abstract The work is devoted to the task of simplifying the assessment of the effect of effluents from treatment facilities on the river hydrobiocenosis. The studies were carried out on the mountain river Uzh (Uzhgorod, Ukraine). Our approach to assessing the impact of waste treatment facilities on the river receiver is based on the estimate of the similarity of species composition and quantitative characteristics of populations of organisms from the aerotank and from the river. It is shown that the quantitative development of populations of species of ciliates from the aeration tank is a good indicator for assessing the degradation of organic matter coming with wastewater. The use of qualitative and quantitative characteristics of the protozoa from the wastewater treatment plant as a criterion for assessing the quality of the environment in the area of wastewater discharge showed their representativeness and effectiveness. The use of a limited number of species makes it possible to conduct an express assessment of the effect of effluents on receiving reservoirs for specialists working with activated sludge in the laboratories of treatment facilities.


2005 ◽  
Vol 71 (2) ◽  
pp. 1042-1050 ◽  
Author(s):  
Gerald Sedmak ◽  
David Bina ◽  
Jeffrey MacDonald ◽  
Lon Couillard

ABSTRACT Reoviruses, enteroviruses, and adenoviruses were quantified by culture for various ambient waters in the Milwaukee area. From August 1994 through July 2003, the influent and effluent of a local wastewater treatment plant (WWTP) were tested monthly by a modified U.S. Environmental Protection Agency Information Collection Rule (ICR) organic flocculation cell culture procedure for the detection of culturable viruses. Modification of the ICR procedure included using Caco-2, RD, and HEp-2 cells in addition to BGM cells. Lake Michigan source water for two local drinking water treatment plants (DWTPs) was also tested monthly for culturable viruses by passing 200 liters of source water through a filter and culturing a concentrate representing 100 liters of source water. Reoviruses, enteroviruses, and adenoviruses were detected frequently (105 of 107 samples) and, at times, in high concentration in WWTP influent but were detected less frequently (32 of 107 samples) in plant effluent and at much lower concentrations. Eighteen of 204 samples (8.8%) of source waters for the two DWTPs were positive for virus and exclusively positive for reoviruses at relatively low titers. Both enteroviruses and reoviruses were detected in WWTP influent, most frequently during the second half of the year.


2021 ◽  
Vol 6 (4) ◽  
pp. 85-87
Author(s):  
Stela Sefa ◽  
Tania Floqi ◽  
Julian Sefa

The wastewater treatment plant (WWTPD) located in Durrës, responsible for a treatment area of 205,000 inhabitants, employs the tertiary advanced wasterwater treatment to generate biogas from activated sludge for self use. The biogas collected from the anaerobic digestion tank feed the boiler and the co-generation unit which is then transformed to power its own energy grid. In order to evaluate the quality of biogas produced by anaerobic digestion of WWTPD’s sludge, is measured the percentage of CH4 and CO2 from the biogas production during a three years period (2016 – 2018). From the performed analyses has resulted a percentage of CH4 up to 75% and 25% CO2 in 2016. While the lowest percentage of CH4 in 2018 with respectively 70% CH4 and 30% CO2. Based on the value measurements, qualitative results of biogas parameters show that physicochemical and biochemical processes are performed under strict conditions and anaerobic digestion is performed according to standards.


Sign in / Sign up

Export Citation Format

Share Document